Introduction to Computer Control Systems

Responsible teacher:

Kristiaan Pelckmans (kp@it.uu.se)

Credits: 5 hp

Course code: 1RT485

Period 2 (Week 43-50)

Course plan

- Teachers and activity
 - Kristiaan Pelckmans
- Lectures

Liana Dai

Problem solving sessions

Liang Dai

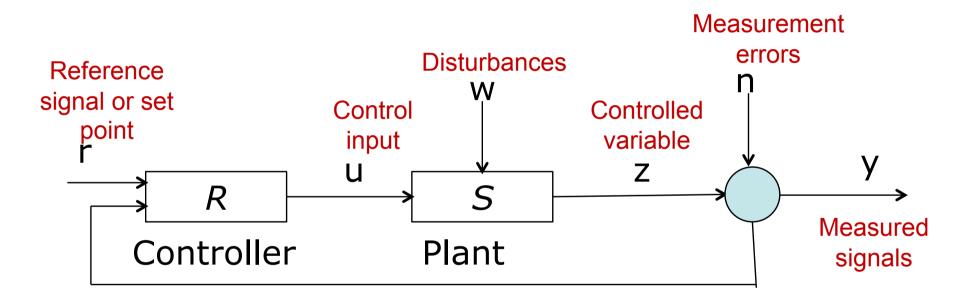
Labs

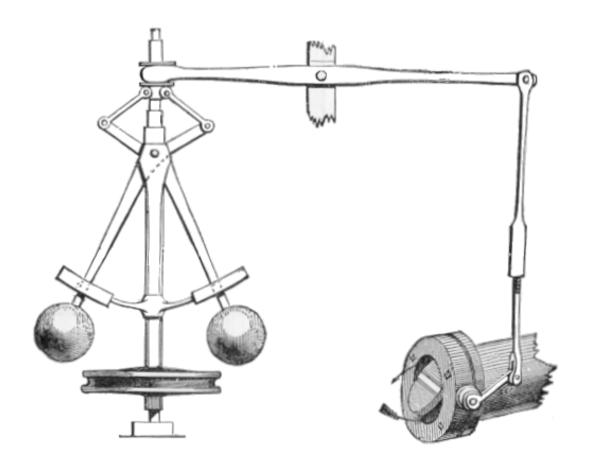
- Structure
 - 10 lectures (20h)
 - 10 problem solving sessions (20h)
 - 2 computer labs (4h)
 - 3 process labs (12h)
- 5hp→400/3 h ≈ 133h. ((400/3h-56h) ≈ 77h of self-study, readings and homework assigments)

General information

- Homepage. Please, visit it frequently!
 http://www.it.uu.se/edu/course/homepage/regsysintro/ht12
- Textbook
 - Torkel Glad and Lennart Ljung: Control Theory -Multivariable and Nonlinear Methods, Taylor and Francis, 2000.
- Examination
 - Written examination on Wednesday, December 17th 2012.
 - Passed laboratory course is also required.

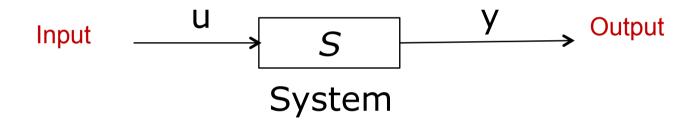
Introduction to Computer Control Systems


- What does this course offer to you?
 - The course covers theoretical and practical topics of control systems


- What are the skills that you can develop?
 - The course prepares you for analysis, design and implementation of control systems
- How will we do that?
 - Participatory lectures, problem solving sessions, process and computer labs (LEGO NXT, Matlab)
- Written exam + compulsory labs

Lecture 1: Introduction and basic notions. The control problem

The feedback concept



What:

- 1. Reference r
- 2. Input System u
- 3. Controlled var. z
- 4. Meas.error n
- 5. Measured Output y
- 6. Disturbance w
- 7. Feedback

The system (I)

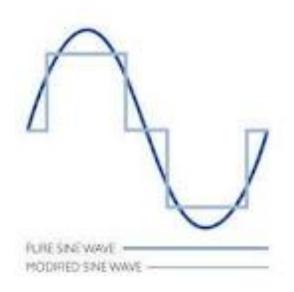
- A system is defined by its inputs and outputs
 - System input a signal fed into the system
 - System output a measurable signal that is produced by the system

 A system is single input - single output (SISO system) if it has one input and one output, otherwise is a multivariable system (MIMO system)

The system (II)

- A system is <u>causal</u> if y(t) only depends on current and previous values of u(t), otherwise is a non-causal system
- A system is static if y(t) at t=t₁ depends only in u(t) at t=t₁ (no memory), otherwise is a <u>dynamic</u> system (system with memory)

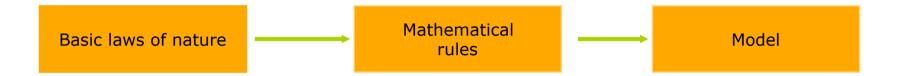




The system (III)

- A system is in <u>discrete-time</u> if the inputs and outputs are defined only for a number of time points (t=t₀+Δt₀, t₀+2Δt₀, t₀+3Δt₀, ...), otherwise is a <u>continuous-time</u> system
- A system is <u>time invariant</u> if it does not depend on absolute time, otherwise is a time varying system
- A system is <u>linear</u> if it satisfies the principle of superposition and homogeneity, otherwise it is a <u>nonlinear</u> system

System modelling


- A model is a mathematical representation of a system
- Models are always approximations
- Not all natural phenomena have a mathematical description
- A model can be created before the actual system is constructed
- Only certain (relevant) system properties are described

"essentially, all models are wrong, but some are useful" George E.P. Box

Mathematical modeling

Model derivation

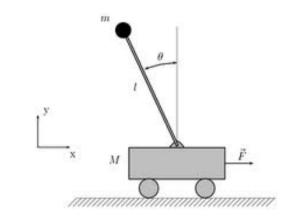
System identification (model fitting through optimization)

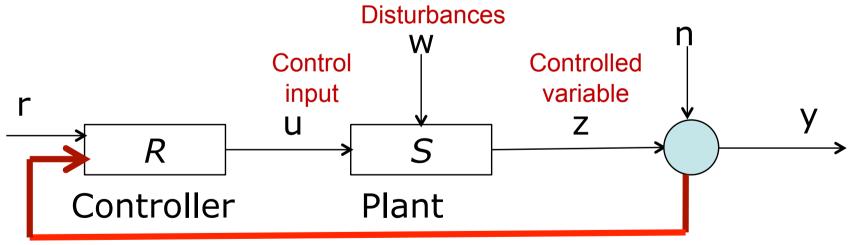
The use of mathematical modeling

Mathematical modeling is a fundamental scientific approach and utilized for **analysis** and **synthesis** of systems in nature, technology and society.

Analysis

- Prediction and forecast (economy, environment)
- Diagnosis


Synthesis


- Design and engineering of processes and systems
- Optimization of systems and processes
- Control
- Process monitoring
- Estimation of inaccessible for measurement quantities ("soft sensors", "sensor fusion")

Control systems

Examples:

- 1. fly-ball governor
- 2. Speed regulator car
- 3. Crane.
- 4. Pendulum.

Our system: LEGO car

- Input signals: motor voltage
- Output signal: car position
- Disturbance: track conditions

To do

- For next lecture
 - Read Chapter 2 of the guide book
- For lecture 4
 - Search the web and pick an article about a control system. Try to identify the control system, particularly:
 - The controlled variable
 - The control input
 - The reference signal