# Lecture 2: Representation of linear systems in continuous and discrete-time

#### **Outline**

- Constants, variables, parameters
- Dynamic models
- State space models
- Impulse response



# Constants, variables, parameters

- Constants: model variables that do not change with time
- System parameters: constants pertaining to system description
- Design parameters: constants that can be selected to give the systems desired properties.
- Variables (signals): model quantities that vary with time



θ is the angle the pendulum has moved from the vertical, **L** is the length of the pendulum, **g** is the acceleration due to gravity, **m** is the mass of the pendulum, and **b** is a damping coefficient.

# Models for dynamic systems

- Dynamic system ⇔ system with memory ⇒ system's output signals depend on previous values of the input signal.
- Mathematic models for dynamic systems can be given by differential (continuous-time) or difference (discrete-time) equations whose solutions are functions of time.

$$g(y^{(n)}(t), y^{(n-1)}(t), ..., y(t), u^{(m)}(t), u^{(m-1)}(t), ..., u(t)) = 0$$
 Input-output form (external form)

where g(.) can be a linear or nonlinear function, and, y(k)(t) and u(k)(t) are

For continuous time

$$t \in [0, \infty), t \in (-\infty, \infty) \qquad y^{(k)}(t) = \frac{d^k}{dt^k} y(t) \qquad u^{(k)}(t) = \frac{d^k}{dt^k} u(t)$$

For discrete time

$$t = 0,1,2,...$$
  $y^{(k)}(t) = y(t-k)$   $u^{(k)}(t) = u(t-k)$ 

# Representation of linear systems

There are different ways to represent linear, time invariant and causal systems

- Input-output equations
- State space form
- Impulse response



### Impulse response: discrete LTI systems

 The response of LTI systems to an arbitrary input is completely characterized by the impulse response

 The output from a LTI system is the weighted sum of input values at all times

$$y(t) = \sum_{l=0}^{\infty} g(l) u(t-l)$$

### Impulse response: continuous LTI systems

 The response of LTI systems to an arbitrary input is completely characterized by the impulse response

 The output from a LTI system is the weighted sum of input values at all times

$$y(t) = \int_{0}^{\infty} g(\tau) u(t - \tau) d\tau$$

### Impulse response: continuous LTI systems

 In continuous time, impulse response is the output signal of the system when the input signal is a Dirac delta function.



$$\delta(t) = \begin{cases} 0 & t < 0 \\ \infty & t = 0 \\ 0 & t > 0 \end{cases}$$

#### **Transfer Function: Transforms**

Exponential series:

$$e^{x} = 1 + x + \frac{1}{2}x^{2} + \frac{1}{6}x^{3} + \dots + \frac{1}{k!}x^{k} + \dots$$

Differentials:

$$pu(t) = \frac{du(t)}{dt}$$

Taylor series:

$$u(t - \tau) = u(t) + \tau \frac{du(t)}{dt} + \frac{\tau^2}{2} \frac{d^2 u(t)}{dt^2} + \dots + \frac{\tau^k}{k!} \frac{d^k u(t)}{dt^k} + \dots$$

Euler:

$$e^{p\tau}u(t) = u(t) + \tau \frac{du(t)}{dt} + \frac{\tau^2}{2} \frac{d^2u(t)}{dt^2} + \dots + \frac{\tau^k}{k!} \frac{d^ku(t)}{dt^k} + \dots$$

#### Transfer Function: Transforms

• Laplace Transform: 
$$U(s) = \int_{0}^{\infty} e^{-st} u(t) dt$$

Discrete time z-transform:

$$U(z) = \sum_{0}^{\infty} e^{-zt} u(t)$$

Convolution 2 Product:

$$y(t) = \int_{0}^{\infty} g(\tau)u(t-\tau)d\tau \longrightarrow Y(s) = U(s)G(s)$$
$$y(t) = \sum_{0}^{\infty} g(\tau)u(t-\tau) \longrightarrow Y(z) = U(z)G(z)$$

## State space description (internal form) for continuous LTI systems

- Input-output form can be a differential equation of high order
- A "simpler" (but equivalent) description is a system of first order differential equations:

$$x_i(t), i = 1,...,n$$
 internal variables (states);

$$x = \begin{bmatrix} x_1(t) \\ \vdots \\ x_n(t) \end{bmatrix} \quad \text{state vector}$$

$$x = \begin{bmatrix} x_1(t) \\ \vdots \\ x_n(t) \end{bmatrix}$$
 state vector; 
$$u = \begin{bmatrix} u_1(t) \\ \vdots \\ u_m(t) \end{bmatrix}$$
 input vector;

$$\dot{x}(t) = A(t)x(t) + B(t)u(t)$$

$$y(t) = C(t)x(t) + D(t)u(t)$$

$$A \in R^{n \times n}, B \in R^{n \times m}, C \in R^{p \times n}, D \in R^{p \times m}$$

If A,B,C,D are constant matrices then the model is linear and time-invariant

# Solution of the state space equations for continuous LTI systems

$$\dot{x}(t) = Ax(t) + Bu(t)$$

$$y(t) = Cx(t) + Du(t)$$

- Set initial conditions  $x_0 = x(t_0)$
- Set input signal u(t),  $t=[t_0,\infty)$
- The solution can be calculated analytically as

$$x(t) = e^{A(t-t_0)}x(t_0) + \int_{t_0}^{t} e^{A(t-\tau)}Bu(\tau)d\tau$$

$$y(t) = Ce^{A(t-t_0)}x(t_0) + \int_{t_0}^{t} Ce^{A(t-\tau)}Bu(\tau)d\tau + Du(t)$$
 Convolution equation

• Matrix exponential  $\Longrightarrow e^A$ 

# Solution of the state space equations for discrete LTI systems

$$x(t+1) = Ax(t) + Bu(t)$$
$$y(t) = Cx(t) + Du(t)$$

- Set initial conditions  $x_0 = x(t_0)$
- Set input signal u(t), t=t<sub>0</sub>,t<sub>0</sub>+1,...
- The solution can be calculated analytically as

$$x(t) = A^{(t-t_0)}x(t_0) + \sum_{k=t_0}^{t-1} A^{t-k-1}Bu(k)$$
$$y(t) = Cx(t) + Du(t)$$

Similarities: Continuous-time Discrete-time

$$e^{At} \longrightarrow A^t$$

$$\longrightarrow \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n}$$

## Impulse response: discrete LTI systems

 In discrete time, impulse response is the output signal of the system when the input signal is a Kronecker delta function.



$$\delta_k(t) = \begin{cases} 0 & t < 0 \\ 1 & t = 0 \\ 0 & t > 0 \end{cases}$$

For impulse 
$$t_0 = 0$$
 response:  $x_0 = 0$   $u(t) = \delta_k(t)$ 

Impulse response: 
$$y(t) = \begin{cases} D & for \quad t = 0 \\ CA^{t-1}B & for \quad t > 0, \quad t = 1, 2, \dots \end{cases}$$
  $g(t)$ 

#### **Conclusions Lecture 2**

- LTI vs. Impulse Response Representation
- Transformations
- State Space Representations
- Continuous vs. Discrete time