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Lecture 3: Model transformation and
sampling

Outline

* Transfer operators and transfer functions

* From state space form to transfer function

* From transfer function to state space description
= State space transformation

= Sampling
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Conclusions Lecture 2

= Causal LTI vs. Impulse Response Representation
* Transformations

= State Space Representations

= Continuous vs. Discrete time
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ToDo:

* Find an article describing a control application
= What are here r,u,z,y,w,d,...

= Example: 2005 DARPA grand Challenge:
rLu,z,y,n,w

Figure 24: Illustration of the steering controller. With zero cross-track error, the basic implemen-
tation of the steering controller steers the front wheels parallel to the path. When cross-track error
is perturbed from zero, it is nulled by commanding the steering according to a non-linear feedback
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Lecture 1: Introduction and basic notions.
The control problem

Measurement
Reference Distm:Nrbances ?]rrors
signal or set Control Controlled
point input variable
F
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;l >
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Controller Plant signals
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Transfer operator and transfer function

State space description for continuous time system

i(t) = Ax(t)+ Bu(t) A€ R™" Be R"™™ CeR¥™ DeRX™,
y(t) = Cu(t)+ Du(t)  Initial condition x(0)=0
Introduce the differentiation operator P = %
px(t) = Az(t) + Bu(l) Laplace transform:
(pI — A)z(t) = Bu(t) L{z(t)} = X(s)
z(t) = (pI — A)™' Bu(t) L{z(t)} = sX(s)

Formally: p — s
the transfer operator

y(t) = Wi(pu(t), W(p) = C(pl — £ )_IB + D
the transfer function
Y(s)=W(s)U(s),W(s)=C(s[ —A)"'B+ D
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Transfer operator and transfer function

State space description for discrete time system

w(t+1) = Aw(t) + Bu(t) Initial condition
y(t) = Cu(t) + Dult) x(0)=0

Introduce the forward shift operator  qz(t) = z(t + 1)

qr(t) = Az(t) + Bu(t) Z transform:
(¢ — A)x(t) = Bu(t) Zix(t)y = X(2)
z(t) = (¢ — A)" " Bu(t) Z{x(t+1)} = 2X(2)

the transfer operator Formally: ¢ — =

y(t) = W(q)u(t),W(q) = C(qgl —A)"'B+ D
the transfer function
Y(2)=WE)UE),W(z)=C(=I—-A)"'B+D
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From external form to transfer function

A continuous system in input-output (external) form
yM (@) + a1y @) + L any(t) =
bou'™ () + b1uF D (@) + ... + bru(t)

@)y — &
Y@ (1) = —y(®) d

All the initial conditions are zero P =

(p" + a1p" ™t 4+ -+ an)y(t) = (bop" + bip® Tt + -+ by )u(t)
Use the substitutions: p—s y(ty — Y(s), u(t) — U(s)
(s” +as" 4.4 an> Y(s) = (bosk +bisF bk) U(s)
Y(s) _ bos"+bys" 4. 4+ by The transfer function

Ul(s) o s"+ays 1+ +an

Works also in reversed order, i.e. from a transfer function to
the input-output form.
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From external form to transfer function

A discrete system in input-output (external) form
y" () + a1y (E = 1) 4+ any(t) =
bou'™ (t) + byu* VDt — 1) + - 4+ bru(t)

All the initial conditions are zero  y?)(f) = y(t— p)

In terms of qy(t) =y(t+1) (¢ 'y(t) =y(t—1))
(¢"+a1g" "+ +an)y(t) = (bog” + b1d" " + - + b)u(t)
Use the substitutions: q— z, yt) = Y(z2), u(t) — U(z)

(2" + a2+ 4 an)Y(2) = (bo2" + 012" 4 4 b)) U(2)

k k=1 4 .,
W(z) = "2) _ b2+ 02 4+ B e transfer function
Uz zo+az271+---+a,
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Choice of state variables

= State space equations carry information about internal
system variables and how they are related to the input and
output signals.

= For a physical system the state is composed of the variables
required to account for storage of mass, momentum and
energy.

= State variables in a mathematical model can be chosen
arbitrarily.

= The dimension of the state vector is called the order of the
system.

The choice of state variables influences the accuracy in
numerical integration (simulation) of the model.
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State vector transformation

State variables can be selected arbitrarily

r(t) = Aux(t)+ Bu(t)
y(t) = Cu(t) + Du(t)
A new state vector p=Tz, det T#0
p(t) = 'TAT_lp(t) + T'Bu(t)
y(t) = CT 'p(t) + Du(t)

State transformation has no effect on the transfer function of
the system

W(s)=C(sI — A)"'B+ D
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From transfer function to state space equation:

method 1

Y(s) bos"+bys" 4. 4 by
U(s) o s+ a5 4.+ ap

Controllable canonical form:

1 —a1 —ao ... —Qp_1 —an 11 x1 ] 1
1, 1 o ... 0 0 D 0

: = 0 1 ... 0 0 s + | : |u
Ty—1 : : : ; 5 Tp—1 O
T 0 o ... 1 O || zn 0
oy
L2

y = [bl—albo oo by 1—apn_1bo bn—anbo] 2 [+bou

_ajn
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From transfer function to state space equation:
method 2

Y(s) bos"+bys" 4. 4 by
U(s) o s+ a1s 4+ ..+ ap

Observable canonical form:
i 1 ] i —a; 1 O ... O 11 1 | i b1 — ay1bg
o —a> O 1 ... 0 o bo — aobg
: = : S : + s u
Ty—1 —an,—-1 0 0 ... 1 Ty—1 bp—1— an—_1bo
in | i —Adan O O o o O 1L In | i b'n, - CLnbO
L]
y = [1 0 0| 2|+ bou
Ln
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Sampling

Continuous system Discrete system

x(t) = Ax(t) + Bu(t) Sampling time T x(t +1) = Ax(1) + Bu(?)
W)= CXO+DUO -k k=012, (0= Cx(0)+ Du()
= The input signal is assumed to be piecewise constant

u(t) =u(kT),kT <t <(k+1DT;

= The sampled system is given by: x((k +1)T') = Fx(kT) + Gu(kT)
V(kT) = Cx(kT) + Du(kT)

T
F=e". G =feA8Bd8
0

= [f Ais invertible, then
G = A_l(eAT —1)5’
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The matrix exponential: e/t

(the transition matrix)

= To find the sampled counterpart to a continuous sytem, it is
necessary to calculate the matrix e

= A common way is e = L (sT — A)!
= For a diagonal A-matrix, we have

AN O .00 Mt ... 0

. 0O X ... O | 0 e .. 0

Diagonal 4 = s At — S
form 0 0 ... \, 0 0 ... e\t

= |n general, if the A-matrix is diagonalizable, we may consider
a change of variables in the space state p =Tz, det T'# 0
p(t) = TAT 'p(t) + TBu(t)
y(t) = CT'p(t) + Du(t)
so that TAT" is diagonal and it simplifies the computation of e*.
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Summary

= State space description is used to describe large dynamic
systems, possibly with several inputs and outputs.

= The state vector in a model can be assigned freely but the choice
influences the structure of the model matrices and its numerical

properties.

= Transfer operators are a “shorthand” way of describing systems in
time domain

= Transfer functions describe systems in transform (Laplace and Z)
domain

= Transfer functions are used for smaller systems under zero initial
conditions and to emphasize the relationship between the input
and output signal

= Canonic forms come in handy in the transformations from transfer
functions to state space form
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