Lecture 4: Linearization. Basis of PID controller.

Outline

- Example Control Systems
- Deviation variables
- Linearization
- PID controller

Examples

DARPA Grand Challenge:

- System
- Controllable Inputs
- Output
- Reference
- Feedback
- Disturbances system
- Measurement error
- Controller
 - x u

- = Robot Car.
- = Orientation wheels.
- = Position of car.
- = Planned trajectory.
- = Deviation from planned trajectory.
- = Mechanical friction in car.
- = Deviation measured location.
- = Output feedback.

Deviation variables

- The output response of a system is affected by the initial conditions and input signals.
- The effect of the initial conditions can be eliminated by assuming that initial conditions are at steady state.
- If the initial conditions are at steady state, it implies that the initial values of the time derivatives are zero, but not the initial value of the signals (inputs, outputs, states).
- Deviation variables (X(t)) are defined as

$$X(t) = x(t) - x_{ss}$$
 where $x(t)$ is the total value of the signal and x_{ss} is the steady state value of the signal

The initial condition of a deviation variable is always zero.

Linearization

- Linear models can be seen as approximations of nonlinear systems.
- Linear approximation to the nonlinear equations is valid for a region near some point around which the linearization is made.
- The point (x_0, u_0) is an equilibrium for

$$\dot{x}(t) = f(x(t), u(t))$$
 if $f(x_0, u_0) = 0$.

• The nonlinear system is described in the vicinity of the equilibrium point (x_0, u_0) by

$$\dot{z}(t) = Az(t) + Bv(t)$$
 where $z=x-x_0$ and $v=u-u_0$.

■ The matrices A and B have elements a_{ii} and b_{ii} given by

$$a_{ij} = \frac{\partial f_i}{\partial x_j} \Big|_{(x,u)=(x_0,u_0)}$$
 $b_{ij} = \frac{\partial f_i}{\partial u_j} \Big|_{(x,u)=(x_0,u_0)}$

PID controller

Franklin et al., Ch. 4

PID controller – Continuous time domain

Feedback controllers make corrective actions based on the difference between the desired and the actual values of output signals.

$$r(t) \xrightarrow[e(t)]{H(p)} \xrightarrow[u(t)]{u(t)} W_p(p) \xrightarrow{y(t)} Control error e(t) = r(t) - y(t)$$

Control error:

In time domain

$$u(t) = u_{ss} + k_P e(t) + k_I \int_0^t e(\tau) d\tau + k_D \frac{de(t)}{dt}$$
$$U(t) = k_P e(t) + k_I \int_0^t e(\tau) d\tau + k_D \frac{de(t)}{dt}$$

Control parameters: k_P, k_T, k_D

- Proportional term related to the present value of *e(t)*
- Integral term related to the history of e(t)
- Derivative term related to the velocity (signed) of e(t)

PID controller – Transfer function

The PID output can written as

$$U(t) = k_P \left(e(t) + \frac{1}{T_I} \int_0^t e(\tau) d\tau + T_D \frac{de(t)}{dt} \right)$$
 Control parameters: k_P , T_I , T_D

The transfer function of the PID controller is

$$H(s) = k_P + \frac{k_I}{s} + k_D s$$
$$U(s) = H(s)E(s)$$
$$E(s) = R(s) - Y(s)$$

- Integral term eliminates the static error $\lim_{t o\infty}e(t)$
- For noisy signals, the use of the derivative action is undesirable (noise effects are amplified)

Discrete PID

- The continuous PID is modified in order to execute the PID algorithm periodically using the sampled values of the controlled variables to determine the values of the controller output.
- The differentiation operator can be replaced by (using the Euler's classic approximation) $(p \longrightarrow \frac{(q-1)}{T})$

$$\dot{x}(t) pprox rac{x(t+T)-x(T)}{T}$$
 where T is the sampling time

 After some manipulations, the discrete controller output can be rewritten as

$$u(t+T) = u_{ss} + k_P \left[e(t) + \frac{1}{T_I} \sum_{k=0}^{t+T} e(k) + \frac{T_D}{T} \left(e(t) - e(t-T) \right) \right]$$

PID controller - Tuning

- PID controllers are implemented in discrete time but tuned using a continuous formulation
- PID tuning involves the selection of the best values of k_P , k_I and k_D (or T_P , T_I and T_D). It depends on the process.
- There are many methods for tuning a PID:
 - Based on experiments with the process: Most of the tuning methods for PID controllers are based on experiments with the process plant (step response, parameters of oscillations, etc.) e.g. Ziegler Nichols.
 - Based on a mathematical model of the process: There are also formal methods for the design of PID controllers that demand a mathematical model of the plant.

PID controller

- The PID controller is the most commonly used controller.
- The derivative term is usually implemented with a filter. Only those controllers have state space representation.

$$H(s) = k_P + \frac{k_I}{s} + \frac{k_D s}{1 + \varepsilon k_D s}$$
 for a small ε

- PID controllers have typically bad performance when there is a significant time delay in the loop. They work though nicely for relatively small time delays.
- PID algorithms can be different depending on manufactures.
 It is important to know the configuration of the PID algorithm before tuning.

Conclusions

- Linearization
- Output/Error feedback
- PID laws