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Lecture 7: Stability 

Outline 
  Bounded-input Bounded-output (BIBO) stability 
  Stability of solutions 
  Stability for linear time invariant systems 
  The Nyquist stability criterion 
  Stability for equilibria via linearization 
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BIBO stability 
  Many different stability notions exist.  
  A general system is BIBO stable, if a bounded input leads to 

a bounded output. 
  A system is input-output stable if it has finite gain (!). 
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Stability of solutions 
  Here stability is understood as stability of solutions of system 

equations with respect to initial conditions.   
  For a general system, stability depends on where in the state 

space the state vector of the system is. 

  The solution x*(t), for the initial state x*(0), is said to be 
stable if for each ε>0 there is a δ such that                       
implies that                     for all t>0. 

  The solution x*(t) is said to be asymptotically stable if it is 
stable and there exist a δ such that                       implies that                     
   as t tends to ∞. 

€ 

˙ x (t) = f (x(t))
y(t) = h(x(t))
x(0) = x0
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Stability for LTI systems 
  LTI systems: stability is a system property (defined by 

systems parameters) and applies notwithstanding the initial 
conditions 

  Initial conditions response 

  The difference between two solutions with different initial 
values (and the same input) is given by 

 It is determined by the properties of A (here we refer to 
unstable, stable or asymptotically stable systems) 

  The behavior of eAt and At is related to the eigenvalues of the 
matrix A. 

All parameters are in 
the matrix A 
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Stability for LTI systems 
  Initial conditions response 

  Eigenvalues and eigenvectors of A: 
  Consider the case of single and distinct eigenvalues: 

  Introduce the transformation matrix: 
  For normalized eigenvectors T is unitary, i.e. 

  Let  x=Tz, z –new state vector, x0=Tz0  
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Stability for LTI systems 

  An LTI system is asymptotically stable if and only if all eigenvalues of the 
matrix A are inside the stability region.  

  If an eigenvalue λi is outside of the stability region then the system is 
unstable 

  If all eigenvalues are inside the stability region or on the stability border 
and those that are on the stability border are single, then the system is 
marginally stable. The system output can though be unbounded despite 
bounded input. 

Continuous system: Discrete system: 

0 
1 Im Im 

Re Re 

s-plane z-plane 
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Stability for continuous LTI system 
  LTI – linear time-invariant system (model) 

•  Input-output form  

•  State space form   

the characteristic polynomial of A, the denominator of W(s) 
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Nyquist stability criterion 
  Nyquist stability criterion provides information about stability 

of the closed-loop system 

W(s) - 
R(s) Y(s) 

C(s) 

Open-loop transfer function: C(s)W(s) 

Stability: The zeros of [1+C(s)W(s)] must be outside the stability region 

The poles of C(s)W(s)=D(s) are the same as the poles of 1+C(s)W(s) 
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Cauchy’s principle of argument 
  The Nyquist stability criterion can be understood by using the 

argument principle (Cauchy’s principle of argument). 

  Cauchy’s principle of argument: For a function F(s), 
analytical except in a finite number of poles. If the function 
F(s) has Z zeros and P poles in an area Γs then Z-P= number 
of times the curve F(s) encircles the origin when s follows the 
boundary Γs in positive direction (counter clockwise) 
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Nyquist contour 
  The Nyquist contouris a polar plot of the function 

D(s)=1+C(s)W(s) when s travels around the contour (or we 
‘sweep’ the frequencies):  

c 

s plane 

R 

Right half plane Left half plane 
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Nyquist stability criterion 
  The number of unstable closed-loop poles (Z) is equal to the 

number of unstable open loop poles (P) plus the number of 
encirclements of the origin (N) of the Nyquist contour of the 
complex function D(s) 

   Z=N+P 

  The Nyquist criterion uses this transformation:  
    D’(s)=D(s)-1=C(s)W(s) 

  Then, the function C(s)W(s) is plotted for s following the 
contour and the encirclements of the Nyquist plot around the 
point [-1, j0] are counted. 

• N is positive for encirclements in direction 
clockwise  
• N is negative for encirclements in opposite 
direction clockwise  
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Nyquist stability criterion 
  If the system C(s)W(s) has no poles in the right half plane, 

the closed loop system 

 is stable if and only if the Nyquist plot does not encircle the 
point (-1,0). 

  If the system C(s)W(s) has poles in the right half plane, the 
closed loop system 

 is stable if and only if the number of encirclements of the 
point (-1,0) in clockwise direction of the Nyquist plot is equal 
to the number of poles in the right half plane. 



UU/IT 

11/19/12 | #‹#› @ UU/IT 

Nyquist plot (Z=N+P) 
  Nyquist diagrams are always symmetrical with 

respect to the real axis 
  Two stable closed loop systems with open loop: 

D’(s)=10/(s-1) D’(s)=10/(s+1) 
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Gain and phase stability margins 
  The margins give us information of how close the curves are 

to encircle the point (-1,0). 

Im{C(s)W(s)} 

Re{C(s)W(s)} 

ωcg and ωcp are the gain and 
phase crossover frequencies 

Unit 
circle 

Pm – phase stability margin 
Gm – gain stability margin 
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Nonlinear systems versus linear 
  Nonlinear system in state-space form 

  Linear system in state-space form 

  Nonlinear systems versus linear  
•  Superposition principle is not valid for nonlinear systems 
•  The principle of frequency preservation does not apply to nonlinear 

systems 
•  Linear models can be seen as approximations of nonlinear systems 

 linearization 
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Stability for equilibria via linearization 
  A nonlinear system in state-space form 

  Can be described, by using linearization, in the vicinity of the equilibrium 
(x0,u0) by the linear system 

      where z=x-x0 and v=u-u0. 

  If all eigenvalues of A have strictly negative real part, then (x0,u0)  is an 
asymptotically stable equilibrium. 

  If any of the eigenvalues of A has strictly positive real part then (x0,u0) is 
an unstable equilibrium  

  If none of the eigenvalues of A has positive real part but there are 
eigenvalues on the imaginary axis then the equilibrium can be either 
stable or unstable. 
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Stability of equilibria via linearization 
  To establish stability properties of equilibria there is no need in studying 

the solutions of the nonlinear system in question. Stability properties are 
defined by the stability properties of the linearized system and linear 
theory is sufficient. 

   If an equilibrium is asymptotically  stable then it is surrounded by an 
attraction domain. All solutions that start within the attraction domain 
converge to the equilibrium. The size of an attraction domain is typically 
difficult to estimate. 

x(0) 
x0 

Ω	
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Summary 
  There are many notions of stability. 
  Stability is a system property in LTI systems and defined by 

the eigenvalues of the system matrix in state space form or 
the denominator of the  transfer function, i.e. system poles. 

  The Nyquist stability criterion provides useful information 
about stability of closed-loop LTI systems. 

  Nonlinear systems are much more difficult to analyze than 
linear ones.  

  Linearization of nonlinear systems can be used to investigate 
stability of equilibria. In some cases though, it is necessary to 
analyze the nonlinear system, anyway. 


