Lecture 9: Sensitivity and robustness #### **Outline** - Sensitivity - Robustness #### Example: Cruise control - The process - The control goal is to maintain constant velocity in the presence of disturbances and model uncertainties (parameter variations). - Disturbances can appear from many different sources: - Changes in the slope of a road - Aerodynamic forces - Rolling resistance - A detailed model can be very complicated, and the design of the controller can a hard task! #### Example: Cruise control - The model - For this example, the controlled variable is the velocity (v), the manipulated variable is the throttle (u) (throttle \rightarrow torque \rightarrow force for moving the car), and the disturbance is the slope angle (θ). - By using linearization around an equilibrium point (v_e, u_e, θ_e) , the following linear model can be used for controller design, e.g. by using pole placement. $u_e a^2 T'(a_e v_e) = \rho C_e A v_e$ $$\frac{dV(t)}{dt} = aV(t) + bU(t) - b_g \Theta(t)$$ $$a = \frac{u_{\varepsilon}a_{n}^{2}T''(a_{n}v_{\varepsilon}) - \rho C_{v}Av}{m}$$ $$b = \frac{a_{n}T(a_{n}v_{\varepsilon})}{m}$$ $$b_{\varepsilon} = g\cos\theta_{\varepsilon}$$ The transfer function for this system is $$V(s) = G_p(s)U(s) + G_d(s)\Theta(s)$$ #### Example: Cruise control - The controller The PI design by pole placement must satisfy that the desired characteristic polynomial $\alpha(s) = 1 + G_p(s)C(s)$ # Example: Cruise control using a PI controller – The nominal performance Changes on the velocity reference value ## Example: Cruise control using a PI controller - Disturbances Slope changes (disturbance) with constant reference # Example: Cruise control using a Pl controller - Parameter variations Mass variations (parameter) and reference changes # Example: Cruise control using a PI controller - Parameter variations Mass variation (parameter) and slope changes (disturbances) #### Some remarks - We have designed feedback controller in order that the closed loop system is stable and the output tracks the reference signal. - The closed-loop control system is affected by the disturbances as well as parameter variations. - It is desirable that the closed-loop system is insensitive to disturbances and parameter variations. - It is desirable that the closed-loop system remains stable despite of parameter variations. ## Sensitivity function ## Sensitivity function #### System equations: $$E(s) = F_r(s)R(s) - F_y(s)Y(s)$$ $$Y(s) = G(s)E(s) + D(s)$$ #### Closed-loop system (SISO) with disturbance: $$Y(s) = \frac{G(s)F_{r}(s)}{1 + G(s)F_{y}(s)}R(s) + \frac{1}{1 + G(s)F_{y}(s)}D(s)$$ $$W(s) = \frac{G(s)F_r(s)}{1 + G(s)F_y(s)}$$ The closed-loop transfer function $$S(s) = \frac{1}{1 + G(s)F_{y}(s)}$$ The sensitivity function #### Sensitivity function - Disturbances - $F_r(s)$ and $F_y(s)$ have to yield stability of the closed loop system and fulfill the design objective - Design objectives: - Disturbance rejection - Reference tracking - Disturbances with frequencies such that $|S(j\omega)|<1$ are attenuated by closed-loop system, but disturbances with frequencies such that $|S(j\omega)|>1$ are amplified. ## Sensitivity function, contd. •If $$F_r(s)=F_y(s)=C(s)$$, $$F_r(s)=F_y(s)=C(s)$$ $$F_r(s)=F_y(s)=C(s)$$ $$F_r(s)=F_y(s)=C(s)$$ $$F_r(s)=F_y(s)=C(s)$$ $$F_r(s)=F_y(s)=C(s)$$ $$F_r(s)=F_y(s)=C(s)$$ $$F_r(s)=F_y(s)=C(s)$$ $$F_r(s)=F_y(s)=C(s)$$ $$F_r(s)=F_y(s)=C(s)$$ Then the output of the closed-loop system is $$Y(s) = \frac{C(s)G(s)}{1 + C(s)G(s)}R(s) + \frac{1}{1 + C(s)G(s)}D(s)$$ - •**Disturbance rejection**: To minimize the impact of d(t) on y(t), C(jw) should be large in the frequency range of d(t), (where D(jw) is large) - •Reference tracking: To make y(t) follow r(t), C(jw) should be large in the frequency range of r(t), (where R(jw) is large) - Stability problems usually arise for high gain design #### Sensitivity function – Model errors Sensitivity function also provides information about how the parameter variations are affecting the closed-loop output. - •G is the nominal model, G_0 is the true model and Δ_G is the relative model error - •The closed-loop output for the true model is related to the nominal closed-loop output by $V = \frac{V}{V} = \frac{1+\Lambda}{V} = \frac{V}{V}$ $$Y_0 = (1 + \Delta_Y)Y$$ $$\Delta_Y = S_0 \Delta_G$$ $$S_0 = \frac{1}{1 + G_0 F_y}$$ - S_0 describes how the relative model error Δ_G is transformed to a relative output error Δ_Y - •The sensitivity function should also kept low (by controller design) in the frequency range where the plant model is uncertain. #### Robustness - Robustness is a property of feedback. - A simple robustness criterion is that the Nyquist curve is sufficiently far from the critical point (-1,0). •The model errors that are allowed without endangering the stability of the closed loop system can be measure by the robustness of the closed-loop system. F(s) - •The open loop transfer function changes from [C(s)G(s)] (the nominal case) to $[C(s)G(s) + C(s)\Delta(s)]$ (the true case) - •The system remains stable if the model errors Δ (s) are bounded so that the 'true' Nyquist curve doesn't encircle the point (-1,0) (assuming that G(s) and Δ (s) do not have zeros on the right half plane) $$|C(j\omega)\Delta(j\omega)| < |1 + C(j\omega)G(j\omega)|$$ $$\left|\Delta(j\omega)\right| < \left|\frac{1 + C(j\omega)G(j\omega)}{C(j\omega)}\right|$$ for all $\omega > 0$. #### Summary - Sensitivity functions give us information about how the output of the closed loop system is affected by disturbances and model errors. - Robustness give us information about what model errors can be allowed in order that the closed loop system remains stable. - A good controller design must provide to the closed loop system: - Small sensitivity to expected disturbances and model errors (in order to have little influence on the output) - Robustness against model uncertainties - Robust closed loop system allow us the use of simplified models for controller design. ### Lecture 10: Practical aspects/ Repetition #### **Outline** - Sampling time - Sampled data control ## Sampling time on pole location (z=e^{Ts}) Effect of the sampling time on the location of poles in the z- map $$s = \sigma + j\omega$$ $$z = e^{Ts} = e^{T(\sigma + j\omega)} = e^{T\sigma + Tj\omega}$$ $$z = e^{T\sigma} \angle T\omega = e^{T\sigma} (\cos T\omega + j\sin T\omega)$$ ### Sampling time - Sampling time T_s seconds; sampling frequency $w_c = 2\pi/T_s$ rad/s - Nyquist-Shannon principle: A <u>bandlimited</u> <u>analog signal</u> that contains no frequencies higher than B rad/s can be perfectly reconstructed from an infinite sequence of samples if the sampling time is less or equal π /B seconds. - Alias phenomenon: a sampled continuous time sinusoid with frequency above $w_c = \pi / T_s$ (Nyqvist frequency) cannot be distinguished from a signal with frequency below w_c . - Anti-alias filter: pre-sampling (continuous) low-pass filter minimizing higher frequency components - Thumb rule: the sampling time is chosen as one tenth of the process time constant or less $$W(s) = \frac{K}{Ts+1}$$ T – time constant (s) ## Aliasing example - $y_1 = \cos(2\pi f_1 t)$, $f_1 = 110$ Hz - $y_2 = \cos(2\pi f_2 t)$, $f_2 = 1110$ Hz - $f_s = 1000 \text{ Hz}$ $f_s = 4000 \text{ Hz}$ ### Sampled data control Feedback sampled-data controller - The plant and the filters are continuous - The controller H(z) is discrete - Sampled-data design includes the controller and the filters #### Summary - Sampling time in a control system has to follow Nyqvist-Shannon principle - Sampling time is typically selected from an experiment or a process model - Discrete controllers for continuous plants are most suitable to design via sampled-data theory