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Lecture 9: Sensitivity and robustness 

Outline 
  Sensitivity 
  Robustness 
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Example: Cruise control - The process 
  The control goal is to maintain constant velocity in the 

presence of disturbances and model uncertainties 
(parameter variations). 

  Disturbances can appear from many different sources: 
•  Changes in the slope of a road 
•  Aerodynamic forces 
•  Rolling resistance 

  A detailed model can be very complicated, and the design of 
the controller can a hard task! 
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Example: Cruise control - The model 
  For this example, the controlled variable is the velocity (v), 

the manipulated variable is the throttle (u) (throttle torque 
 force for moving the car), and the disturbance is the slope 
angle (θ). 

  By using linearization around an equilibrium point (ve,ue,θe), 
the following linear model can be used for controller design, 
e.g. by using pole placement. 

  The transfer function for this system is  
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Example: Cruise control - The controller 

  The PI design by pole placement must satisfy that the 
desired characteristic polynomial  

GP(s) - 
R(s) V(s) 

C(s) 
+ + 
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PI controller 
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Example: Cruise control using a PI controller –  
The nominal performance 

  Changes on the velocity reference value 
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Example: Cruise control using a PI controller - 
Disturbances 

  Slope changes (disturbance) with constant reference 
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Example: Cruise control using a PI 
controller - Parameter variations 

  Mass variations (parameter) and reference changes 
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Example: Cruise control using a PI 
controller - Parameter variations 

  Mass variation (parameter) and slope changes 
(disturbances) 
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Some remarks 
  We have designed feedback controller in order that the 

closed loop system is stable and the output tracks the 
reference signal. 

  The closed-loop control system is affected by the 
disturbances as well as parameter variations. 

  It is desirable that the closed-loop system is insensitive to 
disturbances and parameter variations. 

  It is desirable that the closed-loop system remains stable 
despite of parameter variations. 
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Sensitivity function 

G(s) 
R(s) Y(s) 
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Sensitivity function 

System equations: 

G(s) 
R(s) Y(s) 

D(s) 

- E(s) 

Closed-loop system (SISO) with disturbance: 

Fy(s) 

Fr(s) 

The closed-loop transfer function 

The sensitivity function 
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Sensitivity function - Disturbances  
•  Fr(s) and Fy(s) have to yield stability of the closed loop 
system and fulfill the design objective  

•  Design objectives: 
•  Disturbance rejection 
•  Reference tracking 

•  Disturbances with frequencies such that |S(jω)|<1 are 
attenuated by closed-loop system, but disturbances with 
frequencies such that |S(jω)|>1 are amplified. 
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Sensitivity function, contd. 
• If Fr(s)=Fy(s)=C(s),  

• Then the output of the closed-loop system is 

• Disturbance rejection: To minimize the impact of d(t) on y(t), C(jw) 
should be large in the frequency range of d(t), (where D(jw) is large) 

• Reference tracking: To make y(t) follow r(t), C(jw) should be large 
in the frequency range of r(t), (where R(jw) is large) 

•  Stability problems usually arise for high gain design 
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Sensitivity function – Model errors 
•  Sensitivity function also provides information about how the 
parameter variations are affecting the closed-loop output. 

• G is the nominal model, G0 is the true model and ΔG is the relative model 
error 
• The closed-loop output for the true model is related to the nominal closed-
loop output by 

• The sensitivity function should also kept low (by controller design) in the 
frequency range where the plant model is uncertain.  

G(s) 
R(s) Y0(s) - E0(s) 

Fy(s) 

Fr(s) 

ΔG(s)G(s) 

•  S0 describes how the relative 
model error ΔG is transformed to a 
relative output error ΔY 
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Robustness 
•  Robustness is a property of feedback. 
•  A simple robustness criterion is that the Nyquist curve is sufficiently far 
from the critical point (-1,0).  
• The model errors that are allowed without endangering the stability of the 
closed loop system can be measure by the robustness of the closed-loop 
system. 

• The open loop transfer function changes from [C(s)G(s)] (the nominal 
case) to [C(s)G(s) +C(s)Δ (s)] (the true case) 
• The system remains stable if the model errors Δ (s) are bounded so that 
the ‘true’ Nyquist curve doesn’t encircle the point (-1,0) (assuming that 
G(s) and Δ (s) do not have zeros on the right half plane) 

C(s) G(s) 

R(s) 

Y(s) - 
E(s) 

Δ (s) 
Δ (s) -The model errors 

for all ω>0. 
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Summary 
  Sensitivity functions give us information about how the output 

of the closed loop system is affected by disturbances and 
model errors. 

  Robustness give us information about what model errors can 
be allowed in order that the closed loop system remains 
stable. 

  A good controller design must provide to the closed loop 
system: 
•   Small sensitivity to expected disturbances and model errors (in 

order to have little influence on the output) 
•   Robustness against model uncertainties 

  Robust closed loop system allow us the use of simplified 
models for controller design.  
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Lecture 10: Practical aspects/ Repetition 

Outline 
  Sampling time 
  Sampled data control 
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Sampling time on pole location (z=eTs) 
  Effect of the sampling time on the location of poles in the z-

map 

€ 

s =σ + jω
z = eTs = eT (σ + jω ) = eTσ +Tjω

z = eTσ∠Tω = eTσ (cosTω + j sinTω )
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Sampling time 
•  Sampling time Ts – seconds; sampling frequency wc=2π/Ts – rad/s 
•  Nyquist-Shannon principle: A bandlimited analog signal that 
contains no frequencies higher than B rad/s can be perfectly 
reconstructed from an infinite sequence of samples if the sampling 
time is less or equal π /B seconds. 
•  Alias phenomenon: a sampled continuous time sinusoid with 
frequency above wc= π /Ts (Nyqvist frequency) cannot be 
distinguished from a signal with frequency below wc. 
•  Anti-alias filter: pre-sampling (continuous) low-pass filter 
minimizing higher frequency components 
•  Thumb rule: the sampling time is chosen as one tenth of the 
process time constant or less       

T – time constant (s) 
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Aliasing example 
  y1=cos(2πf1t), f1=110 Hz 
  y2=cos(2πf2t), f2=1110 Hz 
  fs=1000 Hz    fs=4000 Hz 
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Sampled data control 

Feedback sampled-data controller 

y(t) 
- Hc F1(s) 

r(t) 
Wp(s) F2(s) 

H(z) ZOH 

T 

Hc •  Wp(s) – plant 
•  F1(s) – pre-filter 
•  F2(s) – anti-alias filter 
•  H(z) – discrete controller 
•  ZOH – zero-order hold  

•  The plant and the filters are continuous 
•  The controller H(z) is discrete 
•  Sampled-data design includes the controller and the filters   
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Summary 
  Sampling time in a control system has to follow Nyqvist-

Shannon principle 
  Sampling time is typically selected from an experiment or a 

process model 
  Discrete controllers for continuous plants are most suitable to 

design via sampled-data theory  


