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Lecture 9: Sensitivity and robustness 

Outline 
  Sensitivity 
  Robustness 
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Example: Cruise control - The process 
  The control goal is to maintain constant velocity in the 

presence of disturbances and model uncertainties 
(parameter variations). 

  Disturbances can appear from many different sources: 
•  Changes in the slope of a road 
•  Aerodynamic forces 
•  Rolling resistance 

  A detailed model can be very complicated, and the design of 
the controller can a hard task! 
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Example: Cruise control - The model 
  For this example, the controlled variable is the velocity (v), 

the manipulated variable is the throttle (u) (throttle torque 
 force for moving the car), and the disturbance is the slope 
angle (θ). 

  By using linearization around an equilibrium point (ve,ue,θe), 
the following linear model can be used for controller design, 
e.g. by using pole placement. 

  The transfer function for this system is  
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Example: Cruise control - The controller 

  The PI design by pole placement must satisfy that the 
desired characteristic polynomial  

GP(s) - 
R(s) V(s) 

C(s) 
+ + 
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PI controller 
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Example: Cruise control using a PI controller –  
The nominal performance 

  Changes on the velocity reference value 



UU/IT 

12/10/12 | #‹#› @ UU/IT 

Example: Cruise control using a PI controller - 
Disturbances 

  Slope changes (disturbance) with constant reference 
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Example: Cruise control using a PI 
controller - Parameter variations 

  Mass variations (parameter) and reference changes 
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Example: Cruise control using a PI 
controller - Parameter variations 

  Mass variation (parameter) and slope changes 
(disturbances) 
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Some remarks 
  We have designed feedback controller in order that the 

closed loop system is stable and the output tracks the 
reference signal. 

  The closed-loop control system is affected by the 
disturbances as well as parameter variations. 

  It is desirable that the closed-loop system is insensitive to 
disturbances and parameter variations. 

  It is desirable that the closed-loop system remains stable 
despite of parameter variations. 



UU/IT 

12/10/12 | #‹#› @ UU/IT 

Sensitivity function 
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Sensitivity function 

System equations: 

G(s) 
R(s) Y(s) 

D(s) 

- E(s) 

Closed-loop system (SISO) with disturbance: 

Fy(s) 

Fr(s) 

The closed-loop transfer function 

The sensitivity function 
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Sensitivity function - Disturbances  
•  Fr(s) and Fy(s) have to yield stability of the closed loop 
system and fulfill the design objective  

•  Design objectives: 
•  Disturbance rejection 
•  Reference tracking 

•  Disturbances with frequencies such that |S(jω)|<1 are 
attenuated by closed-loop system, but disturbances with 
frequencies such that |S(jω)|>1 are amplified. 
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Sensitivity function, contd. 
• If Fr(s)=Fy(s)=C(s),  

• Then the output of the closed-loop system is 

• Disturbance rejection: To minimize the impact of d(t) on y(t), C(jw) 
should be large in the frequency range of d(t), (where D(jw) is large) 

• Reference tracking: To make y(t) follow r(t), C(jw) should be large 
in the frequency range of r(t), (where R(jw) is large) 

•  Stability problems usually arise for high gain design 
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Sensitivity function – Model errors 
•  Sensitivity function also provides information about how the 
parameter variations are affecting the closed-loop output. 

• G is the nominal model, G0 is the true model and ΔG is the relative model 
error 
• The closed-loop output for the true model is related to the nominal closed-
loop output by 

• The sensitivity function should also kept low (by controller design) in the 
frequency range where the plant model is uncertain.  

G(s) 
R(s) Y0(s) - E0(s) 

Fy(s) 

Fr(s) 

ΔG(s)G(s) 

•  S0 describes how the relative 
model error ΔG is transformed to a 
relative output error ΔY 
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Robustness 
•  Robustness is a property of feedback. 
•  A simple robustness criterion is that the Nyquist curve is sufficiently far 
from the critical point (-1,0).  
• The model errors that are allowed without endangering the stability of the 
closed loop system can be measure by the robustness of the closed-loop 
system. 

• The open loop transfer function changes from [C(s)G(s)] (the nominal 
case) to [C(s)G(s) +C(s)Δ (s)] (the true case) 
• The system remains stable if the model errors Δ (s) are bounded so that 
the ‘true’ Nyquist curve doesn’t encircle the point (-1,0) (assuming that 
G(s) and Δ (s) do not have zeros on the right half plane) 

C(s) G(s) 

R(s) 
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E(s) 
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Δ (s) -The model errors 

for all ω>0. 
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Summary 
  Sensitivity functions give us information about how the output 

of the closed loop system is affected by disturbances and 
model errors. 

  Robustness give us information about what model errors can 
be allowed in order that the closed loop system remains 
stable. 

  A good controller design must provide to the closed loop 
system: 
•   Small sensitivity to expected disturbances and model errors (in 

order to have little influence on the output) 
•   Robustness against model uncertainties 

  Robust closed loop system allow us the use of simplified 
models for controller design.  
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Lecture 10: Practical aspects/ Repetition 

Outline 
  Sampling time 
  Sampled data control 
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Sampling time on pole location (z=eTs) 
  Effect of the sampling time on the location of poles in the z-

map 

€ 

s =σ + jω
z = eTs = eT (σ + jω ) = eTσ +Tjω

z = eTσ∠Tω = eTσ (cosTω + j sinTω )
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Sampling time 
•  Sampling time Ts – seconds; sampling frequency wc=2π/Ts – rad/s 
•  Nyquist-Shannon principle: A bandlimited analog signal that 
contains no frequencies higher than B rad/s can be perfectly 
reconstructed from an infinite sequence of samples if the sampling 
time is less or equal π /B seconds. 
•  Alias phenomenon: a sampled continuous time sinusoid with 
frequency above wc= π /Ts (Nyqvist frequency) cannot be 
distinguished from a signal with frequency below wc. 
•  Anti-alias filter: pre-sampling (continuous) low-pass filter 
minimizing higher frequency components 
•  Thumb rule: the sampling time is chosen as one tenth of the 
process time constant or less       

T – time constant (s) 
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Aliasing example 
  y1=cos(2πf1t), f1=110 Hz 
  y2=cos(2πf2t), f2=1110 Hz 
  fs=1000 Hz    fs=4000 Hz 
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Sampled data control 

Feedback sampled-data controller 

y(t) 
- Hc F1(s) 

r(t) 
Wp(s) F2(s) 

H(z) ZOH 

T 

Hc •  Wp(s) – plant 
•  F1(s) – pre-filter 
•  F2(s) – anti-alias filter 
•  H(z) – discrete controller 
•  ZOH – zero-order hold  

•  The plant and the filters are continuous 
•  The controller H(z) is discrete 
•  Sampled-data design includes the controller and the filters   
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Summary 
  Sampling time in a control system has to follow Nyqvist-

Shannon principle 
  Sampling time is typically selected from an experiment or a 

process model 
  Discrete controllers for continuous plants are most suitable to 

design via sampled-data theory  


