## Lecture 9: Sensitivity and robustness

#### **Outline**

- Sensitivity
- Robustness

#### Example: Cruise control - The process

- The control goal is to maintain constant velocity in the presence of disturbances and model uncertainties (parameter variations).
- Disturbances can appear from many different sources:
  - Changes in the slope of a road
  - Aerodynamic forces
  - Rolling resistance
- A detailed model can be very complicated, and the design of the controller can a hard task!



#### Example: Cruise control - The model

- For this example, the controlled variable is the velocity (v), the manipulated variable is the throttle (u) (throttle  $\rightarrow$  torque  $\rightarrow$  force for moving the car), and the disturbance is the slope angle ( $\theta$ ).
- By using linearization around an equilibrium point  $(v_e, u_e, \theta_e)$ , the following linear model can be used for controller design, e.g. by using pole placement.  $u_e a^2 T'(a_e v_e) = \rho C_e A v_e$

$$\frac{dV(t)}{dt} = aV(t) + bU(t) - b_g \Theta(t)$$

$$a = \frac{u_{\varepsilon}a_{n}^{2}T''(a_{n}v_{\varepsilon}) - \rho C_{v}Av}{m}$$

$$b = \frac{a_{n}T(a_{n}v_{\varepsilon})}{m}$$

$$b_{\varepsilon} = g\cos\theta_{\varepsilon}$$

The transfer function for this system is

$$V(s) = G_p(s)U(s) + G_d(s)\Theta(s)$$

#### Example: Cruise control - The controller



The PI design by pole placement must satisfy that the desired characteristic polynomial  $\alpha(s) = 1 + G_p(s)C(s)$ 

# Example: Cruise control using a PI controller – The nominal performance

Changes on the velocity reference value



## Example: Cruise control using a PI controller - Disturbances

Slope changes (disturbance) with constant reference



# Example: Cruise control using a Pl controller - Parameter variations

Mass variations (parameter) and reference changes



# Example: Cruise control using a PI controller - Parameter variations

 Mass variation (parameter) and slope changes (disturbances)



#### Some remarks

- We have designed feedback controller in order that the closed loop system is stable and the output tracks the reference signal.
- The closed-loop control system is affected by the disturbances as well as parameter variations.
- It is desirable that the closed-loop system is insensitive to disturbances and parameter variations.
- It is desirable that the closed-loop system remains stable despite of parameter variations.

## Sensitivity function



## Sensitivity function



#### System equations:

$$E(s) = F_r(s)R(s) - F_y(s)Y(s)$$
$$Y(s) = G(s)E(s) + D(s)$$

#### Closed-loop system (SISO) with disturbance:

$$Y(s) = \frac{G(s)F_{r}(s)}{1 + G(s)F_{y}(s)}R(s) + \frac{1}{1 + G(s)F_{y}(s)}D(s)$$

$$W(s) = \frac{G(s)F_r(s)}{1 + G(s)F_y(s)}$$

The closed-loop transfer function

$$S(s) = \frac{1}{1 + G(s)F_{y}(s)}$$

The sensitivity function

#### Sensitivity function - Disturbances

- $F_r(s)$  and  $F_y(s)$  have to yield stability of the closed loop system and fulfill the design objective
- Design objectives:
  - Disturbance rejection
  - Reference tracking
- Disturbances with frequencies such that  $|S(j\omega)|<1$  are attenuated by closed-loop system, but disturbances with frequencies such that  $|S(j\omega)|>1$  are amplified.

## Sensitivity function, contd.

•If 
$$F_r(s)=F_y(s)=C(s)$$
,

$$F_r(s)=F_y(s)=C(s)$$

$$F_r(s)=F_y(s)=C(s)$$

$$F_r(s)=F_y(s)=C(s)$$

$$F_r(s)=F_y(s)=C(s)$$

$$F_r(s)=F_y(s)=C(s)$$

$$F_r(s)=F_y(s)=C(s)$$

$$F_r(s)=F_y(s)=C(s)$$

$$F_r(s)=F_y(s)=C(s)$$

$$F_r(s)=F_y(s)=C(s)$$

Then the output of the closed-loop system is

$$Y(s) = \frac{C(s)G(s)}{1 + C(s)G(s)}R(s) + \frac{1}{1 + C(s)G(s)}D(s)$$

- •**Disturbance rejection**: To minimize the impact of d(t) on y(t), C(jw) should be large in the frequency range of d(t), (where D(jw) is large)
- •Reference tracking: To make y(t) follow r(t), C(jw) should be large in the frequency range of r(t), (where R(jw) is large)
- Stability problems usually arise for high gain design

#### Sensitivity function – Model errors

 Sensitivity function also provides information about how the parameter variations are affecting the closed-loop output.



- •G is the nominal model,  $G_0$  is the true model and  $\Delta_G$  is the relative model error
- •The closed-loop output for the true model is related to the nominal closed-loop output by  $V = \frac{V}{V} = \frac{1+\Lambda}{V} = \frac{V}{V}$

$$Y_0 = (1 + \Delta_Y)Y$$

$$\Delta_Y = S_0 \Delta_G$$

$$S_0 = \frac{1}{1 + G_0 F_y}$$

- $S_0$  describes how the relative model error  $\Delta_G$  is transformed to a relative output error  $\Delta_Y$
- •The sensitivity function should also kept low (by controller design) in the frequency range where the plant model is uncertain.

#### Robustness

- Robustness is a property of feedback.
- A simple robustness criterion is that the Nyquist curve is sufficiently far from the critical point (-1,0).

•The model errors that are allowed without endangering the stability of the closed loop system can be measure by the robustness of the closed-loop system. F(s)



- •The open loop transfer function changes from [C(s)G(s)] (the nominal case) to  $[C(s)G(s) + C(s)\Delta(s)]$  (the true case)
- •The system remains stable if the model errors  $\Delta$  (s) are bounded so that the 'true' Nyquist curve doesn't encircle the point (-1,0) (assuming that G(s) and  $\Delta$  (s) do not have zeros on the right half plane)

$$|C(j\omega)\Delta(j\omega)| < |1 + C(j\omega)G(j\omega)|$$

$$\left|\Delta(j\omega)\right| < \left|\frac{1 + C(j\omega)G(j\omega)}{C(j\omega)}\right|$$
 for all  $\omega > 0$ .

#### Summary

- Sensitivity functions give us information about how the output of the closed loop system is affected by disturbances and model errors.
- Robustness give us information about what model errors can be allowed in order that the closed loop system remains stable.
- A good controller design must provide to the closed loop system:
  - Small sensitivity to expected disturbances and model errors (in order to have little influence on the output)
  - Robustness against model uncertainties
- Robust closed loop system allow us the use of simplified models for controller design.

### Lecture 10: Practical aspects/ Repetition

#### **Outline**

- Sampling time
- Sampled data control

## Sampling time on pole location (z=e<sup>Ts</sup>)

Effect of the sampling time on the location of poles in the z-

map

$$s = \sigma + j\omega$$

$$z = e^{Ts} = e^{T(\sigma + j\omega)} = e^{T\sigma + Tj\omega}$$

$$z = e^{T\sigma} \angle T\omega = e^{T\sigma} (\cos T\omega + j\sin T\omega)$$



### Sampling time

- Sampling time  $T_s$  seconds; sampling frequency  $w_c = 2\pi/T_s$  rad/s
- Nyquist-Shannon principle: A <u>bandlimited</u> <u>analog signal</u> that contains no frequencies higher than B rad/s can be perfectly reconstructed from an infinite sequence of samples if the sampling time is less or equal  $\pi$  /B seconds.
- Alias phenomenon: a sampled continuous time sinusoid with frequency above  $w_c = \pi / T_s$  (Nyqvist frequency) cannot be distinguished from a signal with frequency below  $w_c$ .
- Anti-alias filter: pre-sampling (continuous) low-pass filter minimizing higher frequency components
- Thumb rule: the sampling time is chosen as one tenth of the process time constant or less

$$W(s) = \frac{K}{Ts+1}$$
  $T$  – time constant (s)

## Aliasing example

- $y_1 = \cos(2\pi f_1 t)$ ,  $f_1 = 110$  Hz
- $y_2 = \cos(2\pi f_2 t)$ ,  $f_2 = 1110$  Hz
- $f_s = 1000 \text{ Hz}$

 $f_s = 4000 \text{ Hz}$ 



### Sampled data control

Feedback sampled-data controller



- The plant and the filters are continuous
- The controller H(z) is discrete
- Sampled-data design includes the controller and the filters

#### Summary

- Sampling time in a control system has to follow Nyqvist-Shannon principle
- Sampling time is typically selected from an experiment or a process model
- Discrete controllers for continuous plants are most suitable to design via sampled-data theory