
Uppsala University

Dept. of Information Technology

Systems and Control

Introduction to Computer Control

Systems

Computer exercise 2

Observer-based state feedback control

Reading instructions: Glad-Ljung, Chapters 3 and 5.

Name Assistant's comments

Program Year of reg.

Date

Passed prep. ex. Sign

Passed comp. ex. Sign



1 Introduction

This computer simulation exercise provides an introduction to the process lab

exercise 3. In computer exercise 1 and process lab 2, the characteristics and

performance of the PID controller has been discussed. Here another kind of

controller will be addressed, i.e. state feedback controller designed by pole

placement. To implement a closed-loop state feedback, information about sys-

tem states has to be available. In the case when only some of the states are

measured, a state observer is required.

2 Pole placement: State feedback with an observer

One way to design a controller is through pole placement, i.e. by assigning the

roots of the characteristic polynomial of the closed-loop system to pre-de�ned

locations in the complex plane. An advantage of this approach is that stability

of the closed-loop system is guaranteed by placing the poles in the stable region,

i.e. in the left half plane for continuous time system and inside the unit circle for

discrete time system. Pole placement may be implemented using state feedback.

If the states are not readily available, it is instead possible to use an estimated

state vector in the feedback. This estimate is obtained by the use of an observer.

Thus, the stability of the closed-loop system would also depend on the model

utilized in the observer. Modeling error might signi�cantly degrade the observer

performance and even lead to instability. In the following, a state feedback of

observer states will be used for pole placement of the system.

2.1 Controllability and observability

From computer exercise 1, the linearized model of the vehicle is given by

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)

where

A =

0 1 0
0 −1/T 0
1 0 0

 , B =

 0
K/T
0


C =

[
L 0 v

]
, D = 0

with T = 0.15, K = 0.0262, L = 0.075, and v = 0.1

To implement state feedback controller, the system has to ful�ll the controlla-

bility condition, i.e. the controllability matrix S has full rank, where

S =
(
B AB · · · An−1B

)

2



Exercise 2.1: Check the controllability condition of the system. Is the system

controllable?

Answer:

As it has been mentioned before, to implement state-feedback control, one needs

information about system states. Typically, only some of the plant states are

measurable. Thus, a state observer is required. To design an observer, the

�rst thing to do is to check whether the system is observable or not, i.e. the

observability matrix O

O =


C
CA
...

CAn−1


has full rank.

Exercise 2.2: Check the observability condition of the system. Is the system

observable?

Answer:

2.2 State feedback with pole placement

Consider a system with process disturbance v(t) and measurement disturbance

w(t)

ẋ(t) = Ax(t) +Bu(t) +Nv(t) (1)

y(t) = Cx(t) + w(t).

3



Let r(t) is the reference value for output signal and K is the control feedback

gain, the state feedback is then de�ned as

u(t) = −Kx(t) +mr(t).

Here, m is a constant gain which is needed to ensure that the static gain of the

controlled system, from the reference signal to the output signal, is equal to the

desired value. Thus the closed-loop system is given by

ẋ(t) = (A−BK)x(t) +Bmr(t) +Nv(t)

y(t) = Cx(t) + w(t)

By implementing a pole placement method, the closed-loop system poles are as-

signed to the stable region thus rending the closed-loop system asymptotically

stable. Pole placement for single-input single-output systems is easily imple-

mented by means of Ackermann's formula and performed in Matlab with the

command acker(A,B,p_s), where p_s represents the desired closed-loop sys-

tem pole(s). However, the state feedback control approach demands that all the

states are measurable.

2.3 Observer design

The idea of state observer is to obtain the estimated states x̂(t) given information

about the output signal y(t), the input signal u(t) and a system model. With

observer gain L, the state equation of an observer based on (1) is given by

˙̂x(t) = Ax̂(t) +Bu(t) + L(y(t)− Cx̂(t)).

De�ne the state estimation error as x̃(t) = x(t) − x̂(t). Then the dynamics of

estimation error is described by

˙̃x(t) = (A− LC)x̃(t) +Nv(t)− Lw(t)

The poles of the observer are then given by the eigenvalues of (A − LC). To

obtain a faster observer, the poles should be placed further from the origin in the

left half complex plane. A faster observer would respond faster to the di�erence

between x(t) and x̂(t), however it would also be more sensitive to measurement

noise w(t) because it would also get ampli�ed by the observer gain L. The rule
of thumb for choosing the poles of the observer is that the observer's dynamics

should be faster than the state feedback controller's dynamics to compensate

the estimation error on the controller performance.

Quite similar with the state feedback design, an observer could be designed based

on pole placement with the Matlab command acker(). Since the command

follows a generic algorithm for a given pair of matrices A, B, small adjustments

is needed for observer design. (Hint: (A− LC)T = AT − CTLT )

4



2.4 Closed-loop system representation of state feedback with

observer

The closed-loop system with the state observer and state feedback controller is

then de�ned by the following state space model[
ẋ
˙̃x

]
=

[
A−BK BK

0 A− LC

] [
x
x̃

]
+

[
Bm
0

]
r +

[
N
N

]
v +

[
0
−L

]
w (2)

y =
[
C 0

] [x
x̃

]
+ w

Fig. 1 hints on how to place the poles to obtain asymptotically stable closed-

loop system. Generally speaking, the poles have to be inside left half planes of

the complex planes, i.e. all poles must have negative real part. The distance

between the poles and the origin determines how fast the dynamics of the closed-

loop system are. To provide fast response, pole should be placed far away from

the origin, however would require very large input signals. Thus, a trade-o�

between fast response and input signal magnitude should be considered in the

design procedure.

If the absolute value of one pole is small compared to the others, meaning that

this pole is the closest to the origin, the decay rate corresponding to this pole

will be the slowest one. Since the in�uence of the other poles will decay faster,

the closest to the origin pole will dominate the behavior of the system. Such a

pole is referred to as a dominating pole.

The angle ζ is in Fig. 1 decides the oscillatory behavior of the system. Higher

angle would lead to a more oscillatory response.

Im

Re

Figure 1: A pole p with distance d to the origin and angle ζ. The shaded area shows

where it is usually safe to place poles in continuous time systems.

The static gain from reference signal to output signal is given by G(0) =
m(C(−A+BK)−1B).

5



Exercise 2.3: De�ne m in terms of A,B,C, and K so that the static gain of

the closed loop system is equal to one.

Answer:

For the following task, the �le sim_lab2.m could be used as a template.

Task: Construct an LTI object for the closed-loop system using the ss() com-

mand. Place the state feedback poles p_s on the real axis so that they are single

and lie in the interval [−15,−1]. Choose the observer poles p_o to be 10% fur-

ther away from the origin than the state feedback poles. Run run_sim_lab2()

to see the step response of the closed-loop system. Try di�erent values of the

poles.

Exercise 2.4: How do the poles in�uence the response of the system?

Answer:

Task: Try also di�erent values of the observer poles and study how they in�u-

ence the states estimates.

6



Exercise 2.5: How do the observer poles in�uence the state estimates?

Answer:

Task: Now place the state feedback poles p_s at p1,2 = −5±βi, p3 = −6. Vary
the value of β and simulate the step response.

Exercise 2.6: How does the value of β in�uence the step response?

Answer:

7



A List of matlab commands

rank(M) calculates the rank of matrix M.

ss(A,B,C,D) creates a continuous system in state space form.

acker(A,B,p) pole placement design based on Ackermann's formula.

run_sim_lab2(Acl,Bcl,Ccl,Dcl,K,L,m) simulate the step response of closed-

loop system

8


