LTI system responses

Why: Characterize what your system does to a well-defined input signal. Control design criteria are often defined by using specifications of the step response.
Today’s lecture: What and why?

LTI system responses
Why: Characterize what your system does to a well-defined input signal. Control design criteria are often defined by using specifications of the step response.

Observability and controllability
Why: Is the system model such that we can observe all state changes through the output signal? Can we affect all the states using our input signal?
System example: Spring with input force

LTI system in state-space form:

\[
\begin{align*}
\dot{x} &= Ax + Bu \\
y &= Cx + Du
\end{align*}
\]

States and output:

\[
x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} y \\ \dot{y} \end{bmatrix} \quad y = \begin{bmatrix} 1 & 0 \end{bmatrix} x
\]
System example: Spring with input force

Input $u(t)$ is an impulse $\delta(t)$

Temporal perspective
System example: Spring with input force

Input $u(t)$ is an impulse $\delta(t)$

State-space perspective $\mathbf{x}(t)$ at $t = 0^+$.
Input $u(t)$ is an impulse $\delta(t)$.

State-space perspective $x(t)$ at $t = 5$.
System example: Spring with input force

Input $u(t)$ is an impulse $\delta(t)$

State-space perspective $\mathbf{x}(t)$ at $t = 20$.
Input $u(t)$ is an impulse $\delta(t)$

State-space perspective $\mathbf{x}(t)$ at $t = 100$.
LTI system response: transient and steady-state

LTI system in state-space form

\[
\dot{x} = Ax + Bu \\
y = Cx + Du
\]
LTI system response: transient and steady-state

\[y(t) = \int_{\tau=0}^{t} C e^{A(t-\tau)} B u(\tau) d\tau + D u(t) \]

Assume \(x(0) = 0 \) then

\[y(t) = \left[\text{input is a step } u(t) = 1 \text{ for } t \geq 0 \right] \]

\[= CA^{-1} e^{At} B + -CA^{-1}B + D, \quad t \geq 0 \]

transient response steady-state response
Input $u(t)$ is a unit step ($u(t) = 1$ for $t \geq 0$.)

Temporal perspective
LTI system response: transient and steady-state

Input $u(t)$ is a unit step ($u(t) = 1$ for $t \geq 0$.)

- Steady-state y_{ss} (recall final value theorem) and overshoot M.
- Rise time T_r: time it takes for $y(t)$ to go from $0.1y_{ss}$ to $0.9y_{ss}$.
- Settling time T_{sp}: time it takes for $y(t)$ to stay within $(1 \pm p)y_{ss}$.
LTI system response: transient and steady-state

Input $u(t)$ is a unit step ($u(t) = 1$ for $t \geq 0$.)

- Steady-state y_{ss} (recall final value theorem) and overshoot M.
- Rise time T_r: time it takes for $y(t)$ to go from $0.1y_{ss}$ to $0.9y_{ss}$.
- Settling time T_{sp}: time it takes for $y(t)$ to stay within $(1 \pm p)y_{ss}$.
Input $u(t)$ is a unit step ($u(t) = 1$ for $t \geq 0$.)

State-space perspective $\mathbf{x}(t)$ at $t = 100$.
LTI system response: transient and steady-state

Input \(u(t) = \cos(\omega t) \) for \(t \geq 0 \).

Temporal: Note transient vs. stationary/steady-state of \(y(t) \).
LTI system response: transient and steady-state

Input $u(t) = \cos(\omega t)$ for $t \geq 0$.

State-space perspective $x(t)$ at $t = 100$.
Controllability of LTI systems

LTI system of order n in state-space form

$$\dot{x} = Ax + Bu$$
$$y = Cx + Du.$$

A particular state x^* is **controllable** if we can apply an input $u(t)$ that takes the system from $x(0) = 0$ to x^* in finite time T.

On the board: Illustrate
Controllability of LTI systems

LTI system of order n in state-space form

\[
\dot{x} = Ax + Bu \\
y = Cx + Du.
\]

- A particular state x^* is **controllable** if we can apply an input $u(t)$ that takes the system from $x(0) = 0$ to x^* in finite time T.

On the board: Illustrate

- Recall solution of state

\[
x(T) = \int_{t=0}^{T} e^{A(T-\tau)} Bu(\tau) d\tau
\]

 \[
 = \left[\text{using Cayley-Hamilton’s theorem we get following form} \right] \\
 = B\gamma_0 + AB\gamma_1 + \cdots + A^{n-1}B\gamma_{n-1}
\]
Controllability of LTI systems

LTI system of order n in state-space form

\[
\dot{x} = Ax + Bu \\
y = Cx + Du.
\]

- A particular state x^* is **controllable** if we can apply an input $u(t)$ that takes the system from $x(0) = 0$ to x^* in finite time T.

On the board: Illustrate

- Recall solution of state

\[
x(T) = \int_{t=0}^{T} e^{A(T-\tau)}Bu(\tau)d\tau
\]

\[
= [\text{using Cayley-Hamilton’s theorem we get following form}]
\]

\[
= B\gamma_0 + AB\gamma_1 + \cdots + A^{n-1}B\gamma_{n-1}
\]

\Rightarrow a given state $x(T)$ is linear combination of $B, AB, \cdots, A^{n-1}B$.
Controllability of LTI systems, cont’d

LTI system of order n in state-space form

$$\dot{x} = Ax + Bu$$
$$y = Cx + Du.$$

- \Rightarrow a given state $x(T)$ is linear combination of $B, AB, \ldots, A^{n-1}B$.
- All states x^* are controllable if and only if matrix

$$S(A, B) = \begin{bmatrix} B & AB & \cdots & A^{n-1}B \end{bmatrix}$$

has n independent columns. That is, S has full rank.
Controllability of LTI systems, cont’d

LTI system of order n in state-space form

$$\dot{x} = Ax + Bu$$
$$y =Cx + Du.$$

\Rightarrow a given state $x(T)$ is linear combination of $B, AB, \ldots, A^{n-1}B$.

All states x^* are controllable if and only if matrix

$$S(A, B) = [B \quad AB \quad \cdots \quad A^{n-1}B]$$

has n independent columns. That is, S has full rank.

System G is controllable \iff all x^* are controllable \iff rank$(S) = n$.

Important property for designing controllers.
Observability of LTI systems

LTI system of order n in state-space form

$$\dot{x} = Ax + Bu$$
$$y = Cx + Du.$$

- Suppose we have zero input $u(t) \equiv 0$ and initialize system at some state $x(0) = x^* \neq 0$. Then x^* is unobservable if output is unchanged $y(t) \equiv 0$.

On the board: Illustrate
Observability of LTI systems

LTI system of order \(n \) in state-space form

\[
\dot{x} = Ax + Bu \\
y = Cx + Du.
\]

- Suppose we have zero input \(u(t) \equiv 0 \) and initialize system at some state \(x(0) = x^* \neq 0 \). Then \(x^* \) is unobservable if output is unchanged \(y(t) \equiv 0 \).

On the board: Illustrate

- If output signal is constant \(y(t) = 0 \), then all derivatives at \(t = 0 \) are

\[
\frac{d^k}{dt^k} y(t)|_{t=0} = C \frac{d^k x(t)}{dt^k}|_{t=0} = CA^k x^* = 0
\]
Observability of LTI systems

LTI system of order n in state-space form

\[
\dot{x} = Ax + Bu \\
y = Cx + Du.
\]

- Constant $y(t) = 0$, means that for observable $x^* \neq 0$ we have

\[
\frac{d^k}{dt^k} y(t) \bigg|_{t=0} = CA^k x^* \neq 0
\]

\[
\Rightarrow Cx^* \neq 0, \quad CAx^* \neq 0, \quad \cdots, \quad CA^{n-1}x^* \neq 0
\]
Observability of LTI systems

LTI system of order \(n \) in state-space form

\[
\dot{x} = Ax + Bu \\
y = Cx + Du.
\]

- Constant \(y(t) = 0 \), means that for observable \(x^* \neq 0 \) we have

\[
\frac{d^k}{dt^k} y(t)|_{t=0} = CA^k x^* \neq 0
\]

\[\Rightarrow Cx^* \neq 0, \quad CAx^* \neq 0, \quad \cdots, \quad CA^{n-1}x^* \neq 0\]

- That is, \(x^* \neq 0 \) is observable if

\[\mathcal{O}(C, A) = \begin{bmatrix} C \\ CA \\ \vdots \\ CA^{n-1} \end{bmatrix} x^* \neq 0\]
Observability of LTI systems

LTI system of order n in state-space form
\[\dot{x} = Ax + Bu \]
\[y = Cx + Du. \]

- Constant $y(t) = 0$, means that for observable $x^* \neq 0$ we have
 \[\frac{d^k}{dt^k} y(t) \big|_{t=0} = CA^k x^* \neq 0 \]
 \[\Rightarrow Cx^* \neq 0, \quad CAx^* \neq 0, \quad \cdots, \quad CA^{n-1}x^* \neq 0 \]
- That is, $x^* \neq 0$ is observable if
 \[\mathcal{O}(C, A) = \begin{bmatrix} C \\ CA \\ \vdots \\ CA^{n-1} \end{bmatrix} x^* \neq 0 \]

- System G is observable \Leftrightarrow all $x^* \neq 0$ are observable \Leftrightarrow
 \[\text{rank}(\mathcal{O}) = n. \quad (\text{So, } \mathcal{O}x^* = 0 \text{ impossible for } x^* \neq 0) \]
Today’s lecture: What and why?

LTI system responses

Why: Characterize what your system does to a well-defined input signal. Control design criteria are often defined by using specifications of the step response.

Observability and controllability

Why: Is the system model such that we can observe all state changes through the output signal? Can we affect all the states using our input signal?