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1 Complex numbers

1.1 Definitions

A complex number is a number of the form a+ jb, where a and b
are real numbers and j is an imaginary unit, satisfying j2 = −1.
For example, 3 + j2 is a complex number.

Complex plane
A complex number can be viewed as a point or position vector
in a two-dimensional Cartesian coordinate system called the
complex plane. The complex number is plotted using the real
part as the horizontal component, and the imaginary part as
vertical (see Figure 1). Figure 1: Representation in the

complex plane

Magnitude (r) and Phase (φ).
As a vector in the complex plane, an alternative way of defining a complex number is to use its
magnitude and angle. Applying basic trigonometry to the vector in Figure 1, the magnitude and
phase are given by

r =
√
a2 + b2 ; φ = arctan

(
b

a

)
(1.1)

It follows that the complex number z = a+ jb can be expressed as

z = r cosφ+ jr sinφ = rejφ (1.2)

The phase is the angle with respect to the positive real axis, and is expressed in radians. Then, in
general we have

φ =


arctan

(
b
a

)
if a > 0

arctan
(
b
a

)
+ π if a < 0 and b ≥ 0

arctan
(
b
a

)
− π if a < 0 and b < 0

Any increase by an integer multiple of 2π will given the same angle.

Complex conjugate
The complex conjugate of a complex number is another complex number with imaginary parts of
opposite sign. This is, the conjugate of the complex number z = a+ jb is z̄ = a− jb.

1.2 Basic operations

Addition and substraction
Complex numbers are added/substracted by adding/substracting the real and imaginary parts of the
summands. This is,

(a+ jb)± (c+ jd) = (a± c) + j(b± d) (1.3)

Multiplication
Similar to the rules for multiplying two binomials, and since j2 = −1, the multiplication of two
complex numbers (a+ jb) and (c+ jd) gives

(a+ jb)(c+ jd) = (ac− bd) + j(ad+ bc) (1.4)
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Division
The division can be obtained by using the multiplication and the complex conjugate properties. For
example, the division of two complex numbers (a+ jb) and (c+ jd) , where c 6= 0 and d 6= 0, gives

a+ jb

c+ jd
=

(a+ jb)(c− jd)

(c+ jd)(c− jd)
=

(ac+ bd) + j(bc− ad)

c2 + d2
=

(ac+ bd)

c2 + d2
+ j

(bc− ad)

c2 + d2
(1.5)
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2 Matrix algebra

2.1 Definitions

Rows and columns
A matrix is a rectangular array of numbers, symbols, or expres-
sions, arranged in rows and columns, as shown in Figure 2. Here
each element of the matrix is denoted by two subscripts (i, j). For
example, a2,1 represents the element at the second row and first
column of the matrix.

Size
The size of a matrix is defined by the number of rows and columns
that it contains. A matrix with m rows and n columns is called
an m× n matrix or m-by-n matrix. Figure 2: Elements of a matrix

Matrix transpose
The transpose of a matrix A is another matrix, denoted AT , created by any of the following equivalent
actions:

• write the rows of A as the columns of AT

• write the columns of A as the rows of AT

Then, if A is an m× n matrix, then AT is an n×m matrix. For example:

[
1 2

]T
=

[
1
2

]
;

[
1 2
3 4

]T
=

[
1 3
2 4

]
;

1 2
3 4
5 6

T =

[
1 3 5
2 4 6

]
Identity matrix
The identity matrix, also called unit matrix, of size n × n has ones on the main diagonal and zeros
elsewhere. It can be denoted by In or simply by I. Then we have,

I1 =
[
1
]
, I2 =

[
1 0
0 1

]
, I3 =

1 0 0
0 1 0
0 0 1

 , . . . , In =


1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

 (2.1)

If A is a n× n square matrix, it is a property of matrix multiplication (see Matrix multiplication
for details about this operation) that

InA = AIn = A (2.2)

Matrix Rank
In linear algebra, the rank of a matrix A, commonly denoted as rank(A), is the size of the largest
collection of linearly independent columns of A (the column rank) or the size of the largest collection
of linearly independent rows of A (the row rank). Then, for a m× n matrix A we have

row rank of A ≤ m ; column rank of A ≤ n (2.3)

For every matrix, the column rank is equal to the row rank. Therefore, there is no reason to distinguish
between row rank and column rank; the common value is simply called the rank of the matrix. It
follows that

rank(A) ≤ min(m,n) (2.4)
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where min(m,n) denotes the smaller of the two numbers m and n (or their common value if m = n).
For example, the rank of a 3 × 5 matrix can be no more than 3, and the rank of a 4 × 2 matrix can
be no more than 2.

Another example, the matrix A given by A =

 1 2 1
−2 −3 1
3 5 0

 has rank 2: the first two rows are linearly

independent, so the rank is at least 2, but all three rows are linearly dependent (the first is equal to
the sum of the second and third) so the rank must be less than 3.

For example, the matrix A =

[
1 1 0 2
−1 −1 0 −2

]
has rank 1: any pair of columns in linearly dependent.

A common approach to finding the rank of a matrix is to reduce it to a simpler form by elementary

row operations. Let’s see this approach with an example. assume again the matrix A =

 1 2 1
−2 −3 1
3 5 0


This matrix can be put in a reduce form by using the following elementary row operations:

 1 2 1
−2 −3 1
3 5 0

 r2=2r1+r2−−−−−−−→

1 2 1
0 1 3
3 5 0

 r3=−3r1+r3−−−−−−−−→

1 2 1
0 1 3
0 −1 −3

 r3=r2+r3−−−−−−→

1 2 1
0 1 3
0 0 0

 r1=−2r2+r1−−−−−−−−→

1 0 −5
0 1 3
0 0 0


where, for example,

r2=2r1+r2−−−−−−−→ means that row 2 is replaced by 2 times row 1 plus row 2. The final
matrix has two non-zero rows and thus the rank of matrix A is 2.

2.2 Basic Operations

Matrix addition and substraction
Two matrices may be added or substracted only if they have the same dimension (same number of
rows and columns).

For example, if A is a 2 × 2 matrix and B is a 2 × 2 matrix, the addition (or substraction) gives a
2× 2 matrix, as follows

A±B =

[
a1 a2
a3 a4

]
±
[
b1 b2
b3 b4

]
=

[
a1 ± b1 a2 ± b2
a3 ± b3 a4 ± b4

]
(2.5)

Scalar-matrix multiplication
The multiplication of a matrix A with a scalar α gives another matrix αA of the same size as A. For
example,

αA = α

[
a1 a2
a3 a4

]
=

[
αa1 αa2
αa3 αa4

]
(2.6)

Matrix-vector multiplication
To calculate the multiplication between a matrix A and a vector v, first we need to view the vector
as a column matrix. We define the matrix-vector multiplication only if the number of columns in A
equals the number of rows in v. This is, if A is an m × n matrix (matrix with n columns), then the
product Av is defined for n× 1 vectors v.
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For example, if we have a 2× 3 matrix A =

[
a1 a2 a3
a4 a5 a6

]
and a vector v =

b1b2
b3

, then the result is a

2× 1 vector

Av =

[
a1 a2 a3
a4 a5 a6

]b1b2
b3

 =

[
(a1)(b1) + (a2)(b2) + (a3)(b3)
(a4)(b1) + (a5)(b2) + (a6)(b3)

]
(2.7)

Matrix-matrix multiplication
Multiplication of two matrices is defined if and only if the number of columns of the left matrix is the
same as the number of rows of the right matrix. If A is an m × n matrix and B is an n × p matrix,
then their matrix product AB is the m × p matrix whose entries are given by dot product of the
corresponding row of A and the corresponding column of B.

For example, if A is a 2× 3 matrix and B is a 3× 2 matrix, the multiplication gives a 2× 2 matrix,
as follows

AB =

[
a1 a2 a3
a4 a5 a6

]b1 b2
b3 b4
b5 b6

 =

[
a1b1 + a2b3 + a3b5 a1b2 + a2b4 + a3b6
a4b1 + a5b3 + a6b5 a4b2 + a5b4 + a6b6

]
(2.8)

Determinants

Given a 2× 2 matrix A =

[
a b
c d

]
, the determinant of A, also denoted by det(A) or |A|, is defined to

be

det

[
a b
c d

]
= ad− bc (2.9)

Given a 3× 3 matrix A =

a1 a2 a3
b1 b2 b3
c1 c2 c3

, the determinant of A is defined to be

∣∣∣∣∣∣
a1 a2 a3
b1 b2 b3
c1 c2 c3

∣∣∣∣∣∣ = a1b2c3 + b1c2a3 + a2b3c1 − [a3b2c1 + b1a2c3 + a1b3c2] (2.10)

A k × k determinant can be expanded by using the (i, j) minors (see Minors and Cofactors) to
obtain∣∣∣∣∣∣∣∣∣
a11 a12 . . . a1k
a21 a22 . . . a2k
...

...
. . .

...
ak1 ak2 . . . akk

∣∣∣∣∣∣∣∣∣ = a11

∣∣∣∣∣∣∣
a22 . . . a2k
...

. . .
...

ak2 . . . a2k

∣∣∣∣∣∣∣− a12
∣∣∣∣∣∣∣
a21 a23 . . . a2k
...

...
. . .

...
ak1 ak3 . . . akk

∣∣∣∣∣∣∣+ . . .± a1k

∣∣∣∣∣∣∣
a21 . . . a2(k−1)
...

. . .
...

ak1 . . . ak(k−1)

∣∣∣∣∣∣∣
(2.11)

Minors and Cofactors
A minor of a matrix A is the determinant of some smaller square matrix, cut down from A by removing
one or more of its rows and columns. Then, the (i, j) minor of a square matrix, denoted as Mij , is the
determinant of the sub-matrix formed by deleting the i-th row and j-th column. The (i, j) cofactor,
denoted as Cij , is given by

Cij = (−1)(i+j)Mij (2.12)
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For example, given a matrix A =

a1 a2 a3
b1 b2 b3
c1 c2 c3

, the minor M23 and the cofactor C23 of A are

M23 = det

a1 a2 •
• • •
c1 c2 •

 = det

[
a1 a2
c1 c2

]
= a1c2 − (c1a2)

C23 = (−1)(2+3)M23 = − [a1c2 − (c1a2)]

2.3 Matrix Inverse

The inverse of a square matrix A, is a matrix A−1 such that AA−1 = I, where I is the identity matrix.
A square matrix A has an inverse if and only if the determinant |A| 6= 0. A matrix possessing an
inverse is called nonsingular or invertible.

For a 2× 2 matrix A =

[
a b
c d

]
, the matrix inverse is

A−1 =
1

|A|

[
d −b
−c a

]
=

1

(ad− bc)

[
d −b
−c a

]
(2.13)

For a 3× 3 matrix A =

a1 a2 a3
b1 b2 b3
c1 c2 c3

, the matrix inverse is

A−1 =
1

|A|

C11 C12 C13

C21 C22 C23

C31 C32 C33

T (2.14)

where Cij is the (i, j) cofactor (see expression 2.12).

2.4 Summary of important matrix properties

Table 1: Some matrix properties

Not commutative AB 6= BA

Distributive over matrix addition Left distributivity: A(B + C) = AB +AC

Right distributivity: (A+B)C = AC +BC

Scalar multiplication α (AB) = (αA)B and (AB)α = A (Bα)

Transpose (AB)T = BTAT

Identity element∗ AI = IA = A

Inverse matrix∗ AA−1 = A−1A = I

(AB)−1 = B−1A−1

Determinants∗ det(AB) = det(A) det(B)

Power of matrices∗ Ak = AA · · ·A︸ ︷︷ ︸
k times

A0 = I

(αA)k = αkAk

det(Ak) = det(A)k

α is a scalar, k is a positive integer. (∗) Square matrices only.
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2.5 Eigenvalues and eigenvector

An eigenvector of a square matrix A is a non-zero vector v that, when the matrix multiplies v, yields
the same as when some scalar multiples v. This is

Av = λv (2.15)

The number λ is called the eigenvalue of A corresponding to v. The eigenvalue equation for a matrix
A is

Av − λv = 0 =⇒ (A− λI) v = 0 (2.16)

It is a fundamental result of linear algebra that an equation Bv = 0 has a non-zero solution v if and
only if, the determinant |B| = 0. Then, it follows that the eigenvalues of A in expression (2.16) are
precisely the real numbers λ that satisfy the equation

det(A− λI) = 0 (2.17)

where det(A− λI) is called the characteristic polynomial of A.

For example, the eigenvalues of A =

[
2 −4
−1 −1

]
are

det

[
2− λ −4
−1 −1− λ

]
= 0 −→ (2− λ)(−1− λ)− (−4)(−1) = λ2 − λ− 6 = (λ− 3)(λ+ 2) = 0

which has two solutions: λ1 = 3 and λ2 = −2 called the eigenvalues of A.

Let’s find the eigenvectors for the corresponding eigenvalues. Let v =

[
v1
v2

]
.

For λ1 = 3 we have:

(A− λ1I)v = 0 −→ (A− 3I) =

[
2− 3 −4
−1 −1− 3

] [
v1
v2

]
=

[
0
0

]
−→ −v1 − 4v2 = 0
−v1 − 4v2 = 0

If we let v2 = t, then v1 = −4t. All eigenvectors corresponding to λ1 = 3 are multiples of

[
−4
1

]
.

For λ2 = −2 we have:

(A− λ1I)v = 0 −→ (A− (−2)I) =

[
2− (−2) −4
−1 −1− (−2)

] [
v1
v2

]
=

[
0
0

]
−→ 4v1 − 4v2 = 0
−v1 + v2 = 0

If we let v2 = t, then v1 = t. All eigenvectors corresponding to λ2 = −2 are multiples of

[
1
1

]
.
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3 The derivative

3.1 Definition

The derivative is a fundamental tool of calculus. For example, the derivative of the position of a
moving object with respect to time is the object’s velocity: this measures how quickly the position of
the object changes when time is advanced. The derivative measures the instantaneous rate of change
of the function.

The derivative of a function at a chosen input value
describes the best linear approximation of the function
near that input value. In this way, the derivative at a
point of a function f(x) of a single variable is the slope
of the tangent line to the graph of the function at that
point (see Figure 3). Using mathematical notation, the
derivative of a function y = f(x), also denoted as f ′(x)
or dy/dx, is given by

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
(3.1) Figure 3: The tangent line at (x, f(x))

and is defined as the limit of the average rate of change in the function as the length of the interval
on which the average is computed tends to zero. When the derivative is taken n times, it is denoted
as f (n)(x) or dnf

dxn .

3.2 Derivative of basic functions

Most derivative computations eventually require taking the derivative of some common functions. A
list of some of the most frequently used functions of a single real variable and their derivatives is
presented below.

Table 2: Derivative of basic functions

f(x) f ′(x) f(x) f ′(x)

a 0 sin(x) cos(x)

xa axa−1 cos(x) − sin(x)

ex ex tan(x) sec2(x)

ax ax ln(a) arcsin(x) 1√
1−x2 ,−1 < x < 1

ln(x) 1
x arccos(x) − 1√

1−x2 ,−1 < x < 1

loga(x) 1
x ln(a) arctan(x) 1

1+x2

A table of basic rules for differentiating functions is given below

Table 3: Basic rules for differentiating functions

Case Derivative

(αf ± βg) αf ′ ± βg′

(fg)′ f ′g + fg′(
f
g

)′
f ′g−fg′
g2

(f (g(x)))′ f ′(g(x))g′(x)
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3.3 Examples

Example 1. Calculate the derivative of f(x) = x4 + sin(x2)− ln(x)ex + 7

Using the derivative of basic functions given in Table 2 and the properties given in Table 3, we have

f ′(x) = 4x(4−1) +
[
sin(x2)

]′ − [ln(x)ex]′ + 0

= 4x3 +
[
cos(x2)2x

]
−
[

1

x
ex + ln(x)ex

]
= 2x

[
2x2 + cos(x2)

]
− ex

[
1

x
+ ln(x)

]
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4 Laplace Transform

4.1 Definition

The Laplace transform is an integral transform particularly useful in solving linear ordinary differential
equations (ODEs). The Laplace transform L of f(t) is defined by

L {f(t)} = F (s) =

∫ ∞
0

e−stf(t)dt (4.1)

where f(t) is a function defined for t ≥ 0.

4.2 Examples

Some examples of the Laplace transform are presented below.

Example 1: Exponential function. Consider the function

f(t) =

{
0 for t < 0
ae−bt for t ≥ 0

where a and b are constants. The Laplace transformation of this exponential function can be obtained
as follows:

L
[
ae−bt

]
=

∫ ∞
0

ae−bte−stdt = a

∫ ∞
0

e−(b+s)tdt =
a

s+ b

Example 2: Step function. Consider the function

f(t) =

{
0 for t < 0
a for t > 0

where a is a constant. Note that this is a special case of the exponential function ae−bt where b = 0.
The Laplace transformation is given by:

L [a] =

∫ ∞
0

ae−stdt =
a

s

Example 3: Ramp function. Consider the function

f(t) =

{
0 for t < 0
at for t ≥ 0

where a is a constant. The Laplace transformation is given by:

L [at] =

∫ ∞
0

ate−stdt = a

[
t
e−st

−s

∣∣∣∣∞
0

−
∫ ∞
0

e−st

−s
dt

]
= a

[
e−st

−s2

∣∣∣∣∞
0

]
=

a

s2

A list of several important Laplace transforms is given in Table 4.
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Table 4: Basic Laplace transforms

f(t) F (s) f(t) F (s)

unit impulse δ(t) 1 sinh(bt) b
s2−b2

unit step 1(t) 1
s cosh(bt) s

s2−b2

t 1
s2

1
2b t sin(bt) s

(s2+b2)2

tn n!
sn+1 t cos(bt) s2−b2

(s2+b2)2

e−at 1
s+a ect F (s− c)

1
(n−1)! t

n−1e−at; (n = 1, 2, 3...) 1
(s+a)n

cos(bt)−cos(at)
a2−b2 ; (a2 6= b2) s

(s2+a2)(s2+b2)

sin(bt) b
s2+b2

sin(at)+at cos(at)
2a

s2

(s2+a2)2

cos(bt) s
s2+b2

e−at sin(bt) b
(s+a)2+b2

e−at cos(bt) s+a
(s+a)2+b2

A list of important properties of the Laplace transforms is given in Table 5.

Table 5: Properties of Laplace Transforms

L [af(t)] = aF (s) L [tf(t)] = −dF (s)
ds

L [f1(t)± f2(t)] = F1(s)± F2(s) L
[
t2f(t)

]
= d2

ds2
F (s)

L
[
d
dtf(t)

]
= sF (s)− f(0) L [tnf(t)] = (−1)n dn

dsnF (s);n = 1, 2, 3, ...

L
[
d2

dt2
f(t)

]
= s2F (s)− sF (s)− f ′(0) L

[
f( ta)

]
= aF (as)

L
[∫
f(t)dt

]
= F (s)

s + 1
s

[∫
f(t)dt

]∣∣
t=0

L
[∫ t

0 f1(t− τ)f2(τ)dτ
]

= F1(s)F2(s)

L
[
e−atf(t)

]
= F (s+ a)
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5 Ordinary Differential Equations (ODEs)

5.1 Definition

An ODE is an equality involving a function and its derivatives. An ODE of order n is an equation of
the form

F
(
x, y, y′, . . . , y(n)

)
= 0 (5.1)

where y is a function of x, y′ = dy/dx is the first derivative with respect to x, and y(n) = dny/dxn is
the nth derivative with respect to x.

An ODE of order n is said to be linear if it is in the form:

an(x)y(n) + an−1(x)y(n−1) + . . .+ a1(x)y
′
+ a0(x)y = Q(x) (5.2)

In general, an nth-order ODE has n linearly independent solutions. Furthermore, any linear combina-
tion of linearly independent functions is also a solution.

5.2 Solving Linear ODEs using Laplace Transforms

It is possible to use Laplace transform to solve linear ODEs. The procedure is explained with some
examples:

Example 1. Consider the ODE

y′′ − 5y′ + 6y = 0, where y(t) and y(0) = 2, y′(0) = 2

Let Y (s) = L [y(t)]. Instead of solving directly for y(t), we derive a new equation for Y (s). Once we
find Y (s), we inverse the transform to get y(t).

Therefore, the Laplace transform of the ODE is

L [y′′ − 5y′ + 6y] = L [0]

L [y′′]− 5L [y′] + 6L [y] = 0

Applying the properties of the Laplace transform (see Table 5), we have{
s2L [y]− sy(0)− y′(0)

}
− 5 {sL [y]− y(0)}+ 6L [y] = 0

Since y(0) = 2 and y′(0) = 2 we get{
s2Y (s)− 2s− 2

}
− 5 {sY (s)− 2}+ 6Y (s) = 0

Now, the idea is to use some common transforms we already saw in Table 4. Therefore, solving for
Y (s) and applying partial fractions we have

Y (s) =
2s− 8

s2 − 5s+ 6
=

4

s− 2
+
−2

s− 3

Then, using the Table 4 we can obtain the inverse transforms, giving

y(t) = L −1[Y (s)] = 4L −1
[

1

s− 2

]
− 2L −1

[
1

s− 3

]
= 4e2t − 2e3t , for t ≥ 0
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Example 2. Consider the ODE

y′′ + 2y′ + 5y = 3, where y(t) and y(0) = 0, y′(0) = 0

Since y(0) = 0, and y′(0) = 0, the Laplace transform of the ODE becomes{
s2Y (s)

}
+ 2 {sY (s)}+ 5 {Y (s)} =

3

s

Solving for Y (s) and applying partial fractions to get similar transforms as shown in Table 4, we have

Y (s) =
3

s (s2 + 2s+ 5)
=

3

5

[
1

s
− s+ 2

s2 + 2s+ 5

]
=

3

5s
− 3

10

[
2

(s+ 1)2 + 22

]
− 3

5

[
s+ 1

(s+ 1)2 + 22

]
The inverse Laplace transform becomes

y(t) = L −1[Y (s)] =
3

5
L −1

[
1

s

]
− 3

10
L −1

[
2

(s+ 1)2 + 22

]
− 3

5
L −1

[
s+ 1

(s+ 1)2 + 22

]
=

3

5
− 3

10
e−t sin(2t)− 3

5
e−t cos(2t) , for t ≥ 0
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6 Taylor series

6.1 Definitions

The idea is to obtain a linear mathematical function from a nonlinear function. In this case, assume
that the variables deviate only slightly from some operating condition. Consider a function whose
input is x(t) and output is y(t), and the relationship between y(t) and u(t) is given by

y = f(x) (6.1)

If the normal operating condition corresponds to x = a, y = b, then y = f(x) may be expanded into a
Taylor series about this point as follows:

y = f(x)

= f(a) + f ′(a)(x− a)︸ ︷︷ ︸
1st order expansion

+
1

2!
f ′′(a)(x− a)2

︸ ︷︷ ︸
2nd order expansion

+ . . .+
1

n!
fn(a)(x− a)n + . . . (6.2)

where f ′(a), f ′′(a), . . . , fn(a), . . . are the derivatives evaluated at x = a. Note that we call first order
and second order Taylor expansion to a Taylor series calculated until the first and second derivative,
respectively.

The linearization procedure is based on the expansion of the nonlinear function into a Taylor series
about the operating point and the retention of only the linear term. Because we neglect high-order
terms of Taylor series expansion, these neglected terms must be small enough; that is, the variable
deviate only slightly from the operating condition.

6.2 Examples

Some examples of using Taylor expansion to linearize some functions are presented below.

Example 1. Find the first order Taylor expansion of f(x) = ex about x = a

It means that we want to express f(x) = ex around x = a as

f(x) = f(a) + f ′(a)(x− a)

Since f ′(x) = (ex)′ = ex , then the first order Taylor expansion is

ex = ea + ea(x− a)

Example 2. Find the first order Taylor expansion of f(x) = x sin(x) about x = a

Note that f(x) involves the multiplication of two functions: x and sin(x). Then, to obtain the first
derivative we follow the product rule for derivatives (see Table 3). It gives that f ′(x) = (x sin(x))′ =
sin(x) + x cos(x). Then, the first order Taylor expansion is

x sin(x) = a sin(a) + (sin(a) + a cos(a)) (x− a)
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