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Foreword

This document is meant as a small tutorial to get the reader started with MATLAB, starting
with the basics. No experience with MATLAB or any other programming language will be
assumed during this tutorial, but some knowledge about mathematics (matrix algebra in
particular) will be assumed. It will be also assumed that MATLAB is already installed in
your computer. If you need help to get it started, you can go to http://www.mathworks.

se/help/install/index.html. I encourage you to, even though there is an example at the
end where most of the contents will be used, use the program to practice everything step by
step by yourselves.

Its aim is for the students of Introduction to Computer Control Systems, so applications
to control theory will be described. Please take into account that this is just to get the
reader started and is in no way a substitute for MATLAB’s extensive documentation.
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1 Introduction

1.1 What is MATLAB?

MATLAB is a program suite used for scientific computing and engineering. One can think
of it as a very capable calculator, with lots of packages which can do lots of cool stuff.

Using MATLAB can be difficult at the beginning. The next sections of this tutorial will
show the basics of MATLAB, main commands, functions and examples which will hopefully
ease the learning curve, turning MATLAB into a powerful tool for your purposes.

1.2 Interface

The first time it’s started, you will see something like this:

where:

1. Ribbon: This was added recently to MATLAB and lets you access the most common
features of the program, such as creating new files, new variables, plotting or importing
data. However for most of them you’ll write commands instead, since it’s faster that
way.

2. Active path: This is the directory where MATLAB can see user-made files. You can

change it by hand by clicking on the blank space, go up with (third button to the

left of the path) and browse other directories with (fourth button to the left of the
path).

3. Current folder: Shows what’s inside the folder in the Active Path. You can access
your MATLAB scripts or data files from there

2



4. MATLAB Prompt: You can introduce commands here and will be executed by
MATLAB instantly. You can also see the results of your computations here if you
want to. Its use for extensive sets of instructions (i.e. more than a few lines) is
discouraged however.

5. Workspace: Where the variables that you will generate will be showed. You can
see its name, its value (or type, depending on the situation) and its minimum and
maximum.

6. Command History: You can see here which commands have you used in the past.
You can execute them by double-clicking or you can copy-paste them in the prompt
or the editor.

MATLAB uses an interpreted language, that is, you don’t need to compile it unlike
other languages like C. You can access the help of a function or command by typing
help function. This is extremely useful, since usually one does not remember exactly
the syntax of a function. You can also clear variables by using clear variable_name, or
just clear all the workspace with clear all. Be careful when clearing since you cannot undo
it.

To start making a MATLAB script, you can press the button New Script in the ribbon.
A window will then open:

This is what you will use to write most of your code. It can be changed easily and will
not vanish if the program freezes (happens more often than you would think...).

In the example above you will notice that there are semicolons with the command lines.
These are used to prevent MATLAB from showing the results of every step in the Prompt,
which can be annoying and even crippling (think about for example showing a matrix of 2
million elements).

To introduce comments in your code (probably not needed in this course, but it will
make your life and other people’s lives easier in the future), just use a % sign before the line
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you want to comment. If you want to write more than one line of comments, it’s better to
write it as it is, select it, and then press Ctrl+R to comment that block. This also works if,
for example, you want to block some code from executing. You can take out the comments
by selecting what you want to uncomment and press Ctrl+T. Alternatively, you can use the
ribbon buttons.

You can run whole scripts by pressing the Run button or F5 (note that MATLAB will
save the file automatically if you do this). You can evaluate pieces of code by selecting them
and pressing F9, which is particularly useful for testing and diagnostics.

2 Basic elements and operations

2.1 Numbers, vectors and matrices

The most basic element in MATLAB is a scalar. You can assign a scalar to a variable with
an equality sign, for example, A=5 will asign the variable A the value 5. The next element
is a vector, which is a 1-D array of numbers. You can assign them with square brackets
([,]). For example, A=[3 8] will assign the vector (3, 8) to the variable A. Finally, to define
a matrix, you can separate its rows with semicolons, for example, the code A=[0 1; 4 7]

will assign the following matrix to A:

A =

(
0 1
4 7

)
Special Matrices

There are some special matrices that can be generated by MATLAB easily, such as:

� zeros(m,n) will generate a m× n matrix full of zeros

� eye(m,n) will generate a m× n identity matrix

� ones(m,n) will generate a m× n matrix full of ones

� rand(m,n) will generate a m × n matrix with random numbers between 0 and 1 fol-
lowing an uniform distribution

� randn(m,n) will generate a m× n matrix with random numbers following a gaussian
(or normal) distribution of mean 0 and standard deviation 1

Note that you can specify one of the numbers as well, for example by writing zeros(n), but
it will yield a n × n matrix instead of a vector. To generate a vector, you should use for
example zeros(1,n)

Basic operations

All matrix algebra can be done in MATLAB. You can sum, substract, multiply matrices
with the usual signs (+,-,*). Be aware that the dimensions of the involved matrices must

4



be adequate, so for example you can multiply a 3 × 2 matrix with a 2 × 4, but not a 3 × 2
matrix with a 4× 2! Other operations are elevating a matrix to a number (^) and dividing
(/).

Some other matrix operations are:

� Transposing: You can do it by adding an apostrophe (’) to the variable. For example:

A=[0 1; 4 7]’;

A

A =

0 4

1 7

� Inverting: Can be done by using the inv command, so inv(A) will yield A−1. You can
also use A^-1.

� Element-wise operations: These are useful if you want to, for example, compute the
square of the elements of a matrix. You only have to add a dot (.) before the corre-
sponding operand. For example (note the difference):

A=[0 1; 4 7]’;

A.^2

ans =

0 16

1 49

A^2

ans =

4 28

7 53

This can be used to multiply or divide element-wise two matrices (instead of the usual
matrix product)

Element access and modifications

To access an element of a matrix (let’s say Ai,j), just type A(i,j). For a vector, you only
need to specify one of the numbers so for example if you want to access the element xk, you
can type x(k). This will be important when you make loops, since you can also assign values
to elements of a matrix.
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For example:

A=[0 1; 4 7];

B=[5 7 9];

A(2,2)=4;

B(3)=A(2,1);

A

A =

0 1

4 4

B

B =

5 7 4

Alternatively, if you want to access all the rows or all the columns, you have to substitute
the elements inside the parenthesis with :. For example:

A=[0 1; 4 7];

A(:,1)

ans =

0

4

A(1,:)

ans =

0 1

It is also possible to modify the elements of a whole row or a whole column in one
line by using this. However, be aware of dimensions! You can’t overwrite for example a
row of size n with a column vector or with a scalar. It needs to be a row vector of size n!
In the above example using A(:,1)=[3 5] or A(:,1)=3 will not work, but A(:,1)=[3;5],
A(:,1)=[3 5]’ or A(:,1)=3*ones(2,1) will work flawlessly.

One last thing: Be aware of the kind of variable you are working with! Trying to access
the (i, j) element of a vector will yield a harmless error, but trying to access a (j) element
of a matrix won’t if it exists, so for example, A(3) will yield 1 instead of giving an error. In
case of doubt, check the workspace or print your variable.

3 Basic commands

3.1 Mathematics

MATLAB come with a large variety of mathematics embedded in it. Some examples are (all
of them can be checked by typing help elfun):

sin(x) (sine) cos(x) (cosine) tan(x) (tangent)
asin(x) (arc-sine) acos(x) (arc-cosine) atan(x) (arc-tangent)

exp(x) (ex) log(x), ln(x) (logarithm) eig(A) (eigenvalues of A)
abs(x) (—x—) sqrt(x) (

√
x) norm(x) (||x||2)
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Note that all of these functions (except the norm) are taken element-wise, so for example
exp(A) won’t yield eA, but the exponentials of its elements, unlike for example the power
operand ^. Also, the trigonometric functions always work with radians, not with degrees!

3.2 Plotting

There are many kind of plots that can be done in MATLAB. Here, only the 2D scatter/line
plots will be explained because of its simplicity, but there are many other kinds.

The basic instruction for plotting is: plot(xdata,ydata). xdata and ydata should be
vectors of the same size. For example, if we want to plot the function f(x) = x2 in the
interval (−3, 3), it could be done in the following way:

x=-3:0.01:3;

fx=x.^2;

plot(x,fx)

obtaining the following plot:

−3 −2 −1 0 1 2 3
0
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3

4

5

6

7

8

9

Note two things in the code: first, we created x using what is called a range. Its syntax is
xmin:increment:xmax where xmin and xmax are the minimum and maximum values of your
range, and increment is the value that is summed to the previous one, so for example above
it would yield x = (−3,−2.99,−2.98, ..., 2.98, 2.99, 3). Second, we used the element-wise
power which was mentioned earlier.

But plotting just one thing is dull, right? Furthermore, to present a nice figure we should
have a title and labels on the axis, and maybe a legend.
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Let’s plot now the function f(x) = ax2, with the parameter a being 1, 2 and 3.

x=-3:0.01:3;

plot(x,x.^2,x,2*x.^2,x,3*x.^2)

xlabel(’x’)

ylabel(’f(x)’)

title(’ax^2 for different values of a’)

legend(’a=1’,’a=2’,’a=3’)

−3 −2 −1 0 1 2 3
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20

25

30

x

f(
x)

ax2 for different values of a

 

 
a=1
a=2
a=3

Now it looks nicer, right? Note that it’s not necessary to define what to plot in a variable,
although it is encouraged since it makes the code easier to read. The instructions to do the
labels and the title are self-explanatory. The legend must be introduced in the same order
as in the plot command.
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Perhaps we don’t like the colors or we want to make one of them in a dashed line or in
a scatter plot. It can be done by exchanging the plot line above for:

plot(x,x.^2,’k’,x,2*x.^2,’m--’,x,3*x.^2,’o’)

−3 −2 −1 0 1 2 3
0

5

10

15

20

25

30

Notice the new arguments between apostrophes. The k and m will put the lines black
and magenta, respectively. The -- part will put a dashed line and the o will make the
plot to be a scattered plot. More of these options are available in the MATLAB help (type
help plot to access it). Furthermore, you can go to Edit→Figure Properties to edit
these properties and many more in the graphical interface instead of using commands.

Probably you’ve noticed that every time you use a plot command, it will delete the
existing plot. There are two ways to circumvent this: one is to create a new figure before
the plot command with the command figure or figure(i), where i is the figure number
you wish. The other way is to use hold on after your first plot command. That will make
MATLAB paint all the following plot commands in the same figure. You can deactivate it
with hold off.

Finally, once your plot is good enough, you might want to export it. To do so, go to
File→Export Setup and click Export... . Then you have to choose a place and a format
for your file. For the format, I recommend using either PNG or EPS for your images.

3.3 Logic: if-else

An important part of any programming language is the ability to execute different code
chunks for different conditions. In MATLAB (and in general, in most languages) this is
handled by the if, else and elseif clauses.
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The syntax for the three of them are quite similar:

if expression

commands

elseif expression

commands

else

commands

end

Note the end at the last line here. It must be put at the end of a conditional, so if we
only have an if clause, it has to be after the commands that were put below the if. The
expressions that can be used are usually boolean, that is, true-false conditions. The most
basic ones would deal with equalities and inequalities. For example:

a Result
a==5 5 true
a>4 5 true
a<5 5 false
a<=5 5 true
a~=5 5 false

Most of them are self-explanatory. Note the double equality in the first one, this is to
distinguish it from the non-equality (a 6= 5) of the last one.

One can also concatenate different conditions in one single expression, to do that the
symbols && and || can be used between different conditions. The former means AND and
the latter means OR.

Note also that when you make an if clause with an else and/or elseif, if the condition
under the if is fulfilled, it will go through the if but not the other two, even if the condition
for the elseif is satisfied.

Example

Let’s assume that we want to check if an integer a is even or odd, and we want to display
the result. To do so, one can proceed as follows:

if floor(a)~=a

disp(’a is not an integer’)

elseif mod(a,2)>0

disp(’a is an odd integer’)

else

disp(’a is an even integer’)

end

The first conditional will check whether the integer is really an integer or if it has a
decimal part. To do so, we compare it with its rounded down number by using the command
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floor. If both are equal, then it is an integer, otherwise it is not, exiting the conditional at
that very moment.

If it is an integer, it goes to the second conditional, which will see if it’s odd. This can be
easily done with the mod(x,y) command, which yields the rest (or modulus) of the division
x/y, so for example mod(5,2) yields 1. If the rest is a non-zero number (which would be 1
in this case) then the number must be odd. If the rest iss zero, it must be an even integer,
which is printed with the final conditional.

3.4 Loops: for-while

Many times we want to automatize a large number of repetitive tasks. For example we might
want to treat the values of a vector and then move them to another one. To do so, one can
use a for loop:

for i = imin:increment:imax

commands

end

The variable i will be the one which coordinates the loop and it’s given as a range (see
Plotting). The loop will execute as long as there are remaining values of i in the range, so
for example a for i = 1:30 will execute the commands inside the loop 30 times. Note that
the variable i will change its value everytime it goes through the commands, so for example
if we put A(i)=i inside the loop, it will asign the value 1 to the first entry of A, 2 to the
second and so on. This could be done with the following code:

for i = 1:30

A(i)=i;

end

Some useful commands that go very well with a for loop are the ones related to the size
of a vector or matrix, which are length(A) and size(A). The former will yield the value of
the length of the first dimension of A. In vectors it would be the number of entries, but in
matrices it will be the number of rows. The latter will yield the values of all the dimensions
of A as a vector. So if you have a 20× 10 matrix, size will yield (20, 10) while length will
only yield 20.

For example, let’s assume that we have a vector A whose length is not known beforehand
and we want to compute the sine of each element and store it in another vector B. One way
of doing it by using a for loop would be:

for i = 1:length(A)

B(i)=sin(A(i));

end
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But at times we don’t know how many times we have to perform the loop. For example,
if we implement a numerical method whose finishing condition is a certain threshold, we
have no way of telling how many times it will have to perform it. To solve this issue we have
the while loop:

while expression

commands

end

where the expression to be used is a logical expression like the in the conditionals mentioned
above. For example, let’s say that we want to compute the sum of 1

n
where n is an integer

until the terms are less than 10−6. It could be done by:

thres=inf;

sum=0;

n=1;

while thres>1e-6

thres=1/n;

sum=sum+thres;

n=n+1;

end

Note a couple of things about the above code: first, some of the values are initialized
before the loop since otherwise the program will not work. You can even assign ±∞ to
variables if you want. Then, unlike in a for loop, if you want to change a counter (in this
case, it would be increasing n) you have to do it inside the loop.

Be aware that the commands inside the while will be executed as long as the conditional
expression is true. It can happen that the expression is always true, for example the following
code:

a=1;

while a==1

disp(’virus’)

end

will display the word virus in the prompt for all eternity. This is known as an infinite loop
and must be interrupted. To interrupt the execution of any code, press Ctrl+C
while in the MATLAB prompt

4 Control applications

Now, we will focus on how to use MATLAB for control engineering. Those are basic functions
that will be used throughout the course, but there are many more.
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4.1 Defining a system

To define a system there are two possibilities: using a transfer function or using state-space.

� Transfer function, which usually has the following shape:

G(s) =
A(s)

B(s)

where A(s) and B(s) are polynomials. The syntax to define a system like above would
be using tf(a,b) where a and b are vectors which have the numerator and denominator
coefficients of the polynomials starting with the highest degree one, so for example if
we want to define a system for s+3

s2−5s+3
:

a=[1 1];

b=[1 5 3];

sys=tf(a,b);

sys

sys =

s + 1

-------------

s^2 + 5 s + 3

Continuous-time transfer function

The variable we called sys is a special kind of variable which is only used for transfer
functions.

� State-space model, which has to be specified with the 4 usual matrices A,B,C,D.
To do so, we use the command ss(A,B,C,D). Like when we define a transfer function,
a state-space model will also be a special kind of variable.

Converting between transfer functions and state-space is quite easy: you have to use the
functions [A,B,C,D]=ssdata(sys_tf) to obtain the matrices (which can be transformed
into a state-space model with ss) and sys_tf=tf(sys_ss) to convert the state-space model
to a transfer function.

Another issue is that if you use the commands above, it’ll always yield a continuous-time
system. To define a discrete-time system, you have to give an extra argument which would
be the sampling time and MATLAB will do it for you, so for example, with a and b as
defined above:

sys_d=tf(a,b,1)

sys_d =

z + 1

-------------

z^2 + 5 z + 3

Sample time: 1 seconds

Discrete-time transfer function

and the same with ss(A,B,C,D,Ts).
To discretize a system which is given in continuous time, you have to use c2d(sys,Ts),

where sys is your system (either an ss or a tf) and Ts is your sampling time.
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4.2 Responses to different signals

A good thing about defining the systems in the ways above is that there are some routines
defined to make things easier for an engineer. One of such things is to be able to simulate
the response to different signals:

� Impulse response: This is done by using the impulse(sys) command. It will plot
the response as well. You can also obtain the time steps using for the simulation by
using [y,t]=impulse(sys) where y would be the response and t would be the time
steps. For the example above in continuous time, it would yield:
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� Step response: This is done by using the step(sys) command. It works exactly the
same as the impulse response. For example, for the above system it would yield:
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Note that in this case, the static gain is not equal to one!

� Other responses: This is done by using the lsim(sys,u,t), where u would be the
input (such as a parabola or a sine) and t would be a vector containing the time. For
example for the system defined above:

t=0:0.01:3;

u=sin(10*t);

lsim(sys,u,t)

yields:

15



0 0.5 1 1.5 2 2.5 3
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

 

 

Linear Simulation Results

Time (seconds)

A
m

pl
itu

de

sys

where here the blue line is the response of the system.

Last remarks

The MATLAB language is very big. After having used it for many years I still learn new
ways of doing things that make my life easier every day. Furthermore, there are many user-
made toolboxes (collections of user-made functions that are not shipped with MATLAB)
which greatly expand its functionality.

I hope you enjoy the labs and that this guide was helpful to you.
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