Intro. Computer Control Systems: F1

Introduction

Dave Zachariah

Dept. Information Technology, Div. Systems and Control
What is control theory?

The study of dynamical systems and their control.

System = Process = An object whose properties we wish to study/control.
What is control theory?

The study of dynamical systems and their control.

System = Process = An object whose properties we wish to study/control.

- The output y is a signal that we can measure and/or wish to control.
- Using the input u we can affect the system and its output.
Dynamical systems

- Static systems: \(y(t) = f(u(t)) \), depends on \(u \)'s current value!
- **Dynamical** systems: \(y(t) \) may depend on \(u(\tau) \) for \(\tau \leq t \).
Dynamical systems

- Static systems: \(y(t) = f(u(t)) \), depends on \(u \):s current value!
- Dynamical systems: \(y(t) \) may depend on \(u(\tau) \) for \(\tau \leq t \).

Consequence: Dynamical systems have ‘memory’. Current input affects the future output!
Examples
Application examples

Figure: Biomedicine and molecular interactions
Application examples

Figure: Autonomous driving and emission reduction
Application examples

Figure: Aircraft control och stabilization
Application examples

Figure: Robotics and autonomous systems
Application examples

Figure: Industrial processes and power systems
Application examples

Figure: Communication and data networks
Computer control in a nutshell
Computer control in a nutshell

Q: Which input u to the motor such that the output y stays around desired reference signal $r = 0$?

That input u should be computed by a controller!

Design of the controller is the practical goal of control theory.
Q: Which input u to the motor such that the output y stays around desired reference signal $r = 0^\circ$?
Q: Which input u to the motor such that the output y stays around desired reference signal $r = 0^\circ$?

That input u should be computed by a controller!

Design of the controller is the practical goal of control theory
Computer control in a nutshell

Example

Lab exercise in Automatic Control II
Control without feedback

Determine $u(t)$ such that: $y(t)$ should follow a reference signal $r(t)$ closely, despite presence of disturbance $v(t)$.

Open loop: $u(t)$ predetermined by reference $r(t)$.
Control without feedback

Determine $u(t)$ such that: $y(t)$ should follow a reference signal $r(t)$ closely, despite presence of disturbance $v(t)$.

Open loop: $u(t)$ predetermined by reference $r(t)$.

Challenges:
- Requires accurate knowledge about the system.
- Does not take into account unknown disturbances.
Control using feedback

Feedback: $u(t)$ also determined by measuring $y(t)$.

![Control System Diagram]

- **Advantages:**
 - Requires only an approximative model of the system.
 - Can mitigate unknown disturbances.

- **Challenges:**
 - Feedback controller may create instability if poorly designed.
Control using feedback

Feedback: $u(t)$ also determined by measuring $y(t)$.

![Control System Diagram]

Advantages:
- Requires only an approximative model of the system.
- Can mitigate unknown disturbances.
Control using feedback

Feedback: $u(t)$ also determined by measuring $y(t)$.

![Control System Diagram]

Advantages:
- Requires only an approximative model of the system.
- Can mitigate unknown disturbances.

Challenges:
- Feedback controller may create instability if poorly designed.
Typical design requirements

- Main requirement: The system under control should be stable.
Typical design requirements

- Main requirement: The system under control should be *stable*.
- When reference signal changes, the output should *quickly* track it with minimal *oscillations*, using a reasonable input.
- If a disturbance occurs, the output should quickly return to the reference signal.
Typical design requirements

- Main requirement: The system under control should be *stable*.
- When reference signal changes, the output should *quickly* track it with minimal *oscillations*, using a reasonable input.
- If a disturbance occurs, the output should quickly return to the reference signal.

The control problem: Design a controller such that the controlled system fulfills the desired requirements.
About the course
The course

Content

Book options:

Webpage: http://www.it.uu.se/edu/course/homepage/regsyintro/vt17
Studentportalen will also be used.
The course
Content

Book options:

Webpage: http://www.it.uu.se/edu/course/homepage/regsyintro/vt17
Studentportalen will also be used.

Content:

- Analysis of linear dynamical systems and feedback
- Basic control principles
 - PID control
 - Forward- och cascade control
 - State feedback control
- Discrete-time models and digital control
The course
Examination forms

Labs:

▸ 3 × Computer Labs (recommended)
▸ 1 × Process Lab (mandatory)

Exam: Evaluation of each problem solution is based on:

1. demonstrating understanding of the problem using principles of the course
2. provided a reasonable and reproducible solution

Hand-in (recommended): 2 × hand-ins which help getting your hands on early and yield bonus credits for the exam.

Secret to passing course
The course

Examination forms

Labs:

- 3×Computer Labs (recommended)
- 1×Process Lab (mandatory)

Exam: Evaluation of each problem solution is based on:

1. demonstrating understanding of the problem using principles of the course
2. provided a reasonable and reproducible solution

Hand-in (recommended): 2×hand-ins which help getting your hands on early and yield bonus credits for the exam.

Secret to passing course: Get hands dirty

- by taking notes
- through problem solving!
System models
Mathematical models of systems

\[y(t) = G(u(t)) \]

Figure: Graphical representation of system \(G \) with input and output.

Models are neither ‘true’ nor ‘false’, but rather more or less

- accurate
- useful

representations of underlying mechanisms with measurable effects.
Build intuition from simple systems

Ex. #1: Vehicle in motion

![Figure: Force $u(t)$ och velocity $y(t)$.

Physical principles: Newton’s law

$$F = m \ddot{y},$$

where $F = u - F_{fr} = u - Cy$.

[Board: Linear differential equation]
Build intuition from simple systems

Ex. #2: Damper

Figure: Force $u(t)$ och position $y(t)$.

Physical principles: Newton’s law

$$F = m\ddot{y},$$

where $F = u - Ky$.

[Board: Linear differential equation]
Ex. #3: Inverted pendulum

Physical principles: Torque equation

\[\frac{mL^2}{3} \ddot{y} = u + \frac{mgL}{2} \sin(y). \]

Using Taylor series around \(y = 0 \):

\[\sin(y) \approx \sin(0) + \cos(0)(y - 0) = y \]

[Board: Linear differential equation]
Linear system models
Linear system models

Linear time-invariant models are useful and sufficiently accurate in many control applications.
Linear system models

Linear time-invariant models are useful and sufficiently accurate in many control applications

\[y(t) = G u(t) \]

Differential equation is one possible description of input-output relation, i.e. \(G \):

\[
\frac{d^n}{dt^n} y + \cdots + a_{n-1} \frac{d}{dt} y + a_n y = b_0 \frac{d^n}{dt^m} u + \cdots + b_{m-1} \frac{d}{dt} u + b_m u
\]

with initial conditions.

Often hard to interpret!
Linear system models

Linear time-invariant models are useful and sufficiently accurate in many control applications

\[y(t) = G u(t) \]

Different mathematical descriptions of the input-output relation, i.e. \(G \):

1. Differential equations
2. Impulse response / weighting function
3. Transfer function / frequency response
4. State-space description

The latter descriptions are more manageable and practical!
Linear system models

Linear time-invariant models are useful and sufficiently accurate in many control applications

\[y(t) = G y(t) \]

Revise basics:

1. Complex numbers
2. Linear ordinary differential equations
3. Laplace transform
4. Linearization using Taylor series expansion
5. Vector/matrix operations and eigenvalues

See Math Tutorial on course webpage!