Time response, feedback and PID-control

Dave Zachariah
Dept. Information Technology, Div. Systems and Control
1) Systems with impulse response \(g(t) = \mathcal{L}^{-1}[G(s)] \), where \(G(s) \) is rational, are all
 a) Products of sinusoidal functions ↑
 b) Linear combinations of exponential functions ↑
 c) Stable ↓
Poles and time responses
Poles and time responses

Step response

\[u(t) \rightarrow G \rightarrow y(t) \]

Model \(Y(s) = G(s)U(s) \) with transfer function

\[G(s) = \frac{b_0 s^m + \cdots + b_m}{s^n + a_1 s^{n-1} + \cdots + a_n}. \]
Poles and time responses

Step response

\[u(t) \rightarrow G \rightarrow y(t) \]

Model \(Y(s) = G(s)U(s) \) with transfer function

\[
G(s) = \frac{b_0 s^m + \cdots + b_m}{s^n + a_1 s^{n-1} + \cdots + a_n}.
\]

Suppose input is a step:

\[
u(t) = \begin{cases} u_0 \text{ (const.)} & \text{for } t \geq 0, \\ 0 & \text{for } t < 0, \end{cases}
\]

\[
\mathcal{L} \rightarrow U(s) = \frac{u_0}{s}
\]
Poles and time responses

Step response

\[y(t) = G(s)U(s) \]

Model \(Y(s) = G(s)U(s) \) with transfer function

\[
G(s) = \frac{b_0 s^m + \cdots + b_m}{s^n + a_1 s^{n-1} + \cdots + a_n}.
\]

Suppose input is a step:

\[
u(t) = \begin{cases}
 u_0 \text{ (const.)} & \text{for } t \geq 0, \\
 0 & \text{for } t < 0,
\end{cases}
\]

\[
\mathcal{L} \left\{ u(t) \right\} \rightarrow U(s) = \frac{u_0}{s}
\]

Study step response \(y(t) \) of the system
Poles and time responses

Poles distance from the origin \leftrightarrow quickness

Ex. 1st-order system:

$$G(s) = \left\lceil \text{typ. form} \right\rceil = \frac{p}{s + p}$$

Pole at:

$$s = -p$$

Pole-zero diagram:
Poles and time responses

Poles distance from the origin \leftrightarrow quickness

Ex. 1st-order system:

$$G(s) = \left[\text{typ. form} \right] = \frac{p}{s + p}$$

Step response:
Poles and time responses

Complex-conjugated poles ↔ system oscillations

Ex. 2nd-order system:

\[G(s) = \left[\text{alt. form} \right] = \frac{\omega_0^2}{s^2 + 2\xi\omega_0 s + \omega_0^2} \]

Poles at:

\[s = -\omega_0\xi \pm i\omega_0 \sqrt{1 - \xi^2} \]

Pole-zero diagram:
Poles and time responses

Complex-conjugated poles \leftrightarrow system oscillations

Ex. 2nd-order system:

$$G(s) = \left[\text{alt. form} \right] = \frac{\omega_0^2}{s^2 + 2\xi\omega_0 s + \omega_0^2}$$

Step response:

![Graph showing step responses for different values of ξ]
Poles and time responses

Pole that is closest to the origin \leftrightarrow slowest time constant

Ex.: 3rd-order system

$$G(s) = \frac{p}{s + p} \cdot \frac{\omega_0^2}{s^2 + 2\zeta\omega_0 s + \omega_0^2}$$

with $\omega_0 = 1$ and $\zeta = \sqrt{0.5}$.

Poles at:

$$s = -p \quad \text{och} \quad s = -\omega_0\xi \pm i\omega_0\sqrt{1 - \xi^2}$$

Pole-zero diagram:
Poles and time responses

Pole that is closest to the origin \leftrightarrow slowest time constant

Ex.: 3rd-order system

$$G(s) = \frac{p}{s + p} \cdot \frac{\omega_0^2}{s^2 + 2\zeta\omega_0 s + \omega_0^2}$$

with $\omega_0 = 1$ and $\zeta = \sqrt{0.5}$.

![Diagram](attachment:diagram.png)
Assume stable system \(Y(s) = G(s)U(s) \) with

\[
 u(t) = \begin{cases}
 u_0 \text{ (const.)} & \text{for } t \geq 0, \\
 0 & \text{for } t < 0,
 \end{cases}
\]

\[
 \mathcal{L} \rightarrow U(s) = \frac{u_0}{s}
\]

The system static gain is therefore \(G(0) \).
Static gain of a system

Assume stable system \(Y(s) = G(s)U(s) \) with

\[
 u(t) = \begin{cases}
 u_0 \text{ (const.)} & \text{for } t \geq 0, \\
 0 & \text{for } t < 0,
 \end{cases}
\]

\[
 \mathcal{L} \quad U(s) = \frac{u_0}{s}
\]

Final value of step response \(y(t) \) can be computed using final value theorem:

\[
y_f = \lim_{t \to \infty} y(t) = \lim_{s \to 0} sY(s) = \lim_{s \to 0} sG(s) \frac{u_0}{s} =
\]
Static gain of a system

Assume *stable* system $Y(s) = G(s)U(s)$ with

$$u(t) = \begin{cases} u_0 \text{ (const.)} & \text{for } t \geq 0, \\ 0 & \text{for } t < 0, \end{cases} \quad \mathcal{L} \quad U(s) = \frac{u_0}{s}$$

Final value of step response $y(t)$ can be computed using *final value theorem*:

$$y_f = \lim_{t \to \infty} y(t) = \lim_{s \to 0} sY(s) = \lim_{s \to 0} sG(s) \frac{u_0}{s} = G(0)u_0$$
Assume stable system $Y(s) = G(s)U(s)$ with

$$u(t) = \begin{cases} u_0 \text{ (const.)} & \text{for } t \geq 0, \\ 0 & \text{for } t < 0, \end{cases} \quad \mathcal{L} \quad U(s) = \frac{u_0}{s}$$

Final value of step response $y(t)$ can be computed using final value theorem:

$$y_f = \lim_{t \to \infty} y(t) = \lim_{s \to 0} sY(s) = \lim_{s \to 0} sG(s) \frac{u_0}{s} = G(0)u_0$$

The system static gain is therefore $G(0)$
Connected and feedback systems
Connected and feedback systems

Transfer function obtained using Laplace + added help signals

Ex.: Parallel-connected systems

\[Y(s) = Y_1(s) + Y_2(s) = G_1(s)U(s) + G_2(s)U(s) \]
\[= (G_1(s) + G_2(s))U(s) \]
Connected and feedback systems

Transfer function obtained using Laplace + added help signals

Ex.: Serial-connected systems

\[Y(s) = G_2(s)U_1(s) = G_2(s)(G_1(s)U(s)) = G_2(s)G_1(s)U(s) \]
Connected and feedback systems

Transfer function obtained using Laplace + added help signals

Ex.: Feedback systems

\[u \rightarrow y \]

[Board: derive transfer function \(u \rightarrow y \)]
Feedback control based on error signal

PID-control

Feedback control:

Simple control strategy: Use the control error

\[e(t) \triangleq r(t) - y(t) \]

[Board: intuition from temperature control]

to determine input \(u(t) \)
Feedback control based on error signal

PID-control

Feedback control:

Simple control strategy: Use the control error

\[e(t) \triangleq r(t) - y(t) \]

[Board: intuition from temperature control]

to determine input \(u(t) \) based on:

▶ current error: \(\propto e(t) \) (Proportional)
Feedback control based on error signal

PID-control

Feedback control:

Simple control strategy: Use the control error

\[e(t) \triangleq r(t) - y(t) \]

[Board: intuition from temperature control]

to determine input \(u(t) \) based on:

▶ current error: \(\propto e(t) \) (Proportional)
▶ past error: \(\propto \int_{\tau=0}^{t} e(\tau)d\tau \) (Integral)
Feedback control based on error signal

PID-control

Feedback control:

\[e(t) \triangleq r(t) - y(t) \]

Simple control strategy: Use the control error to determine input \(u(t) \) based on:

- current error: \(\propto e(t) \) (Proportional)
- past error: \(\propto \int_{\tau=0}^{t} e(\tau)\,d\tau \) (Integral)
- change in error: \(\propto \dot{e}(t) \) (Derivative)
Ideal PID-controller

Controller with user parameters:

\[u(t) = K_p e(t) + K_i \int_{\tau=0}^{t} e(\tau) d\tau + K_d \dot{e}(t) \]

Laplace domain:

\[U(s) = K_p E(s) + K_i \frac{1}{s} E(s) + K_d s E(s) \]

\[\text{controller } F(s) \]

\[\text{system } G \]

\[y \]
Ideal PID-controller

Controller with user parameters:

\[u(t) = K_p e(t) + K_i \int_{\tau=0}^{t} e(\tau) d\tau + K_d \dot{e}(t) \]

Laplace domain:

\[U(s) = (K_p + K_i s + K_d s) E(s) \]

Controller \(F(s) \) as \(E(s) \).
Ideal PID-controller

Controller with user parameters:

\[u(t) = K_p e(t) + K_i \int_{\tau=0}^{t} e(\tau) d\tau + K_d \dot{e}(t) \]

- **P**roportional
- **I**ntegrating
- **D**erivative

Laplace domain:

\[U(s) = K_p E(s) + K_i \frac{1}{s} E(s) + K_d s E(s) \]

\[= \left(K_p + \frac{K_i}{s} + K_d s \right) E(s). \]

controller \(F(s) \)
Ideal PID-controller

Controller with user parameters:

\[u(t) = K_p e(t) + K_i \int_{\tau=0}^{t} e(\tau) d\tau + K_d \dot{e}(t) \]

Laplace domain:

\[U(s) = K_p E(s) + K_i \frac{1}{s} E(s) + K_d s E(s) \]

\[= \left(K_p + \frac{K_i}{s} + K_d s \right) E(s). \]
Analysis of simple feedback control
Simple feedback control system

Closed-loop system from reference to output

- Closed-loop system from r to y: $G_c(s)$
- Open-loop system from e to y: $G_o(s) = G(s)F(s)$
Simple feedback control system
Closed-loop system from reference to output

Closed-loop system from \(r \) to \(y \): \(G_c(s) \)

Open-loop system from \(e \) to \(y \): \(G_o(s) = G(s)F(s) \)

[Board: derive closed-loop system \(G_c \)]

Note: We can design the poles of \(G_c \)!
Accuracy: stationary control error

Using a step as reference signal r

Assume stable $G_c(s)$ with reference (step):

$$r(t) = \begin{cases} r_0 & \text{for } t \geq 0, \\ 0 & \text{for } t < 0, \end{cases} \quad \mathcal{L} \quad R(s) = \frac{r_0}{s}$$

Final value of error $e(t)$
Accuracy: stationary control error

Using a step as reference signal \(r \)

Assume stable \(G_c(s) \) with reference (step):

\[
 r(t) = \begin{cases}
 r_0 & \text{for } t \geq 0, \\
 0 & \text{for } t < 0,
\end{cases} \quad \mathcal{L} \quad R(s) = \frac{r_0}{s}
\]

Final value of error \(e(t) \)

\[
e_f = \lim_{t \to \infty} e(t) = \lim_{s \to 0} sE(s) = \lim_{s \to 0} s \frac{1}{1 + G_0(s)} \frac{r_0}{s} = \lim_{s \to 0} \frac{r_0}{1 + G(s)F(s)}
\]
Accuracy: stationary control error
Using a step as reference signal r

Assume stable $G_c(s)$ with reference (step):

$$r(t) = \begin{cases} r_0 & \text{for } t \geq 0, \\ 0 & \text{for } t < 0, \end{cases} \quad \mathcal{L} \rightarrow \quad R(s) = \frac{r_0}{s}$$

Final value of error $e(t)$ \(\mathcal{L} \rightarrow \) $E(s) = R(s) - Y(s)$:

$$e_f = \lim_{t \to \infty} e(t) = \lim_{s \to 0} sE(s) = \lim_{s \to 0} s \frac{1}{1 + G_0(s)} \frac{r_0}{s}$$

$$= \lim_{s \to 0} \frac{r_0}{1 + G(s)F(s)}$$

Result:

Stationary error e_f approaches 0 if $G(0)F(0) = \infty$. (E.g. when $F(s)$ contains $\frac{1}{s}$, i.e. integration.)
Summary and recap

- Relation between poles and system time-response
- The transfer function for connected and feedback systems
- Simple feedback control and ideal PID-controller
- Control accuracy: stationary error