Automatic Control III

Lecture 8 – The circle criterion and describing functions

Thomas Schön
Division of Systems and Control
Department of Information Technology
Uppsala University.

Email: thomas.schon@it.uu.se,
www:user.it.uu.se/~thoscl12

1. Summary of lecture 7
2. The circle criterion
3. Describing functions
Summary of lecture 7 (I/III)

- Defined stability of equilibrium (stationary) points; stable, asymptotically stable and globally asymptotically stable.
- Investigated stability of a nonlinear system by studying how the distance to the origin changes over time.
- The above idea lead us into Lyapunov theory.

Summary of lecture 7 (II/III)

A Lyapunov function $V(x)$ “measures the distance to the goal”:
- Let $V(x)$ denote a (generalized) distance from x to an equilibrium point x_0.
- The distance must remain positive until the system has arrived in the equilibrium point x_0,
 $$ V(x) > 0, \quad x \neq x_0, \quad V(x_0) = 0. $$
- The distance must decrease until the final destination is reached,
 $$ \frac{d}{dt} V(x(t)) = V_x(x(t)) \dot{x}(t) = V_x(x(t)) f(x(t)) < 0, \quad x(t) \neq x_0. $$
- If the system “diverge”, this must be clearly visible
 $$ V(x) \to \infty, \quad |x| \to \infty. $$
Theorem: If a Lyapunov function V satisfying

$$V_x(x(t)) \dot{f}(t) < 0, x \neq x_0, \quad V(x) \to \infty \text{ as } |x| \to \infty$$

can be found, then the equilibrium point x_0 is globally asymptotically stable.

The tricky part is to **find** the Lyapunov function!

We also showed that finding a Lyapunov function for a linear system amounts to solving the **Lyapunov equation**,

$$A^TP + PA = -Q.$$
Theorem: [Circle criterion] Assume that $G(s)$ has no poles in the RHP and that $f(0) = 0, k_1 \leq f(y)/y \leq k_2$ for $y \neq 0$. Then the closed loop system is input output stable if the Nyquist curve $G(i\omega)$ does not enter, nor encircle the circle which intersects the negative real axis (perpendicularly) in $-1/k_1$ and $-1/k_2$.

Automatic Control III, Lecture 8 – The circle criterion and describing functions
T. Schön, 2013
A simple feedback system – with saturation

The same system, but now with a saturation (a static nonlinearity) in the loop.

Note the amplitude-stability!

Recall – Fourier series

A Fourier series decomposes periodic signals into the sum of a (possibly infinite) set of simple oscillating functions, namely sines and cosines (or complex exponentials).

\[N = 1 \]

\[N = 2 \]

\[N = 5 \]

\[N = 100 \]

Automatic Control III, Lecture 8 – The circle criterion and describing functions
T. Schön, 2013
Passing a sine through a static nonlinearity

\[u = C \sin \omega t \]

\[w = f(C \sin \omega t) \]

Fourier series expansion of \(w \):

\[w = \frac{1}{2} \tilde{A}_0(C) + \sum_{n=1}^{\infty} (\tilde{A}_n(C) \cos(n\omega t) + \tilde{B}_n(C) \sin(n\omega t)) \]

\[= A_0(C) + \sum_{n=1}^{\infty} A_n(C) \sin(n\omega t + \phi_n(C)) \]

Define the describing function as

\[Y_f(C) = \frac{A_1(C)e^{i\phi(C)}}{C}, \]

where \(|Y_f(C)| \) is the gain and \(\arg Y_f(C) \) is the phase shift.

Sine through a static nonlinearity \(G(s) \) (I/II)

\[u \rightarrow f \rightarrow w \rightarrow G(s) \rightarrow y \]

\[u = C \sin \omega t \]

\[w = A_0(C) + \sum_{n=1}^{\infty} A_n(C) \sin(n\omega t + \phi_n(C)) \]

\[y = A_0(C)|G(0)| + \sum_{n=1}^{\infty} A_n(C)|G(i\omega)| \sin(n\omega t + \phi_n(C) + \psi(n\omega)) \]

Automatic Control II, Lecture 8 – The circle criterion and describing functions
T. Schön, 2013
Sine through a static nonlinearity $G(s)$ (II/II)

Assume:
- $A_0 = 0$ (valid for example if f is an odd function).
- $|G(\text{i}k\omega)| < \frac{1}{|G(\text{i}\omega)|}$, $|k| > 1$, i.e. G "steep LP filter".

Then we have

$$y \approx A_1(C)|G(\text{i}\omega)| \sin(\omega t + \phi_1(C) + \psi(\omega))$$

where $\psi(\omega) = \text{arg} G(\text{i}\omega)$.

Follow the sine around the loop (I/III)

Only keep the fundamental frequency:

$$u = C \sin \omega t$$
$$w = A_1(C) \sin(\omega t + \phi_1(C))$$
$$y = A_1(C)|G(\text{i}\omega)| \sin(\omega t + \phi_1(C) + \psi(\omega))$$
$$e = -y$$
Follow the sine around the loop (II/III)

Conditions for oscillation: \(e = u \), i.e.

\[
e = A_1(C)|G(i\omega)| \sin(\omega t + \phi_1(C) + \psi(\omega) + \pi) = C \sin(\omega t) = u
\]

The same amplitude: \(A_1(C)|G(i\omega)| = C \)

The phase is the same, save for \(2\pi: \phi_1(C) + \psi(\omega) = \pi + \nu 2\pi \).

Follow the sine around the loop (III/III)

or, more compactly (phase and amplitude in one equation)

\[
Y_f(C)G(i\omega) = -1
\]

since \(G(i\omega) = |G(i\omega)| e^{i\psi(\omega)} \).
The describing function is given by

\[Y_f(C) = \frac{A_1(C)e^{i\phi_1(C)}}{C} \]

- **Interpretation:** The "transfer function" for the nonlinearity for a stationary sine (the fundamental frequency). An "amplitude dependent gain".
- The gain is given by \(|Y_f(C)| \) and the phase shift is given by \(\arg Y_f(C) \).

Circle criterion: The circle criterion generalizes the Nyquist criterion to static nonlinearities.

Describing function: An approximate method for examining existence of periodic solutions for systems involving a static nonlinearity in the feedback loop.