Summary of lecture 7 (I/III)

- Defined stability of equilibrium (stationary) points; stable, asymptotically stable and globally asymptotically stable.
- Investigated stability of a nonlinear system by studying how the distance to the origin changes over time.
- The above idea lead us into Lyapunov theory.

Summary of lecture 7 (II/III)

A Lyapunov function $V(x)$ "measures the distance to the goal":
- Let $V(x)$ denote a (generalized) distance from x to an equilibrium point x_0.
- The distance must remain positive until the system has arrived in the equilibrium point x_0, $V(x) > 0, x \neq x_0, V(x_0) = 0$.
- The distance must decrease until the final destination is reached, $\frac{d}{dt} V(x(t)) = V_x(x(t)) x(t) = V_x(x(t)) f(x(t)) < 0, x(t) \neq x_0$.
- If the system "diverge", this must be clearly visible $V(x) \to \infty, |x| \to \infty$.
Summary of lecture 7 (III/III)

Theorem: If a Lyapunov function V satisfying

$$V_x(x(t))f(t) < 0, x \neq x_0, \quad V(x) \to \infty \text{ as } |x| \to \infty$$

can be found, then the equilibrium point x_0 is globally asymptotically stable.

The tricky part is to find the Lyapunov function!

We also showed that finding a Lyapunov function for a linear system amounts to solving the **Lyapunov equation**,

$$A^T P + PA = -Q.$$

Stability – the small gain theorem

Two stable systems S_1 and S_2 which are connected according to the figure below results in a closed loop system that is stable if

$$\|S_1\| \cdot \|S_2\| < 1.$$

Circle criterion

Theorem: [Circle criterion] Assume that $G(s)$ has no poles in the RHP and that $f(0) = 0, k_1 \leq f(y)/y \leq k_2$ for $y \neq 0$. Then the closed loop system is input output stable if the Nyquist curve $G(i\omega)$ does not enter, nor encircle the circle which intersects the negative real axis (perpendicularly) in $-1/k_1$ and $-1/k_2$.

A simple feedback system

Unstable!
A simple feedback system – with saturation

The same system, but now with a saturation (a static nonlinearity) in the loop.

Note the amplitude-stability!

Passing a sine through a static nonlinearity

\[u = C \sin \omega t \]

\[w = f(C \sin \omega t) \]

Fourier series expansion of \(w \):

\[w = \frac{1}{2} A_0(C) + \sum_{n=1}^{\infty} \left(A_n(C) \cos(n\omega t) + B_n(C) \sin(n\omega t) \right) \]

\[= A_0(C) + \sum_{n=1}^{\infty} A_n(C) \sin(n\omega t + \phi_n(C)) \]

Define the describing function as

\[Y_f(C) = \frac{A_1(C)e^{i\phi(C)}}{C}, \]

where \(|Y_f(C)|\) is the gain and \(\arg Y_f(C)\) is the phase shift.

Sine through a static nonlinearity \(G(s) \) (I/II)

\[u = C \sin \omega t \]

\[w = A_0(C) + \sum_{n=1}^{\infty} A_n(C) \sin(n\omega t + \phi_n(C)) \]

\[y = A_0(C)G(0) + \sum_{n=1}^{\infty} A_n(C)\left|G(i\omega)\right| \sin(n\omega t + \phi_n(C) + \psi(n\omega)) \]

Recall – Fourier series

A Fourier series decomposes periodic signals into the sum of a (possibly infinite) set of simple oscillating functions, namely sines and cosines (or complex exponentials).

\[N = 1 \]

\[N = 2 \]

\[N = 5 \]

\[N = 100 \]
Sine through a static nonlinearity \(G(s) \) (II/II)

Assume:
- \(A_0 = 0 \) (valid for example if \(f \) is an odd function).
- \(|G(\pm \omega)| < |G(\pm \omega)|, \quad |k| > 1 \), i.e. \(G \) “steep LP filter”.

Then we have

\[
y \approx A_1(C) \left| G(i\omega) \right| \sin(\omega t + \phi_1(C) + \psi(\omega))
\]

where \(\psi(\omega) = \arg G(i\omega) \).

Follow the sine around the loop (I/III)

Only keep the fundamental frequency:

\[
u = C \sin \omega t \\
w = A_1(C) \sin(\omega t + \phi_1(C)) \\
y = A_1(C) |G(i\omega)| \sin(\omega t + \phi_1(C) + \psi(\omega)) \\
e = -y
\]

Follow the sine around the loop (II/III)

Conditions for oscillation: \(e = u \), i.e.

\[
e = A_1(C) |G(i\omega)| \sin(\omega t + \phi_1(C) + \psi(\omega) + \pi) = C \sin(\omega t) = u
\]

The same amplitude: \(A_1(C) |G(i\omega)| = C \)

The phase is the same, save for \(2\pi \): \(\phi_1(C) + \psi(\omega) = \pi + n2\pi \).

Follow the sine around the loop (III/III)

or, more compactly (phase and amplitude in one equation)

\[
Y_f(C)G(i\omega) = -1
\]

since \(G(i\omega) = |G(i\omega)| e^{i\psi(\omega)} \).
The describing function is given by

\[Y_f(C) = \frac{A_f(C)e^{i\phi_f(C)}}{C} \]

- **Interpretation**: The “transfer function” for the nonlinearity for a stationary sine (the fundamental frequency). An “amplitude dependent gain”.
- The gain is given by \(|Y_f(C)| \) and the phase shift is given by \(\arg Y_f(C) \).

Circle criterion: The circle criterion generalizes the Nyquist criterion to static nonlinearities.

Describing function: An approximate method for examining existence of periodic solutions for systems involving a static nonlinearity in the feedback loop.