Control Design (F, IT) Computer Controlled Systems (STS, W)

Computer exercise 4

Decentralized control: Hints

Excercise 3.1

$\mathrm{G}=\mathrm{zpk}(\mathrm{Gm})$

Input Nb	Output Nb	Poles	
1	1	-0.0159	
1	2	-0.0159	-0.02651
2	1	-0.0159	-0.159
2	2	-0.0159	

No, there are no limitations since there are only poles in the left half plane, and there are no zeros.

Excercise 3.2

```
zero(Gm) = -0.0214, -0.1640
pole(Gm) = -0.0159, -0.0159, -0.1590, -0.0265
```

Only stable poles and zeros. No limitations. Select ω_{c} as large as possible, i.e. $\omega_{c}=0.1 \mathrm{rad} / \mathrm{s}$. If we would have a non-minimum phase zero in z, then select $\omega_{c} \leq z / 2$.

Excercise 4.1

$R G A(G(0))=\left[\begin{array}{cc}1.2 & -0.2 \\ -0.2 & 1.2\end{array}\right]$
$R G A(G(0.1))=\left[\begin{array}{ll}0.99-0.03 i & 0.01+0.03 i \\ 0.01+0.03 i & 0.99-0.03 i\end{array}\right] \approx\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
Pair along the diagonal, i.e. input 1-output 1, input 2-output 2. According to the RGA decentralized control should work fine, but with some interaction in the steady state $(\omega=0)$.

Excercise 4.2

step (Gm)
In the step response we can se that input i mostly affects output i but also the other output, so clearly, there are interactions between the loops.

Excercise 4.3

F1m $=$ decpid(Gm, 0.1,pi/3,1)
clpoler (Gm,F1m)
Yes, the closed loop system is stable.

Excercise 4.4

simtank('min', F1m)
Slightly coupled.

Excercise 5.1

```
P=eye(2)
W1=inv(dcgain(Gm))
```

Yes it is decoupled.
$R G A(\tilde{G}(0))=I$
$R G A\left(\tilde{G}\left(\omega_{c}\right) \approx\left[\begin{array}{cc}1.03+0.096 i, & -0.03-0.096 i \\ -0.03-0.096 i & 1.03+0.096 i\end{array}\right]\right.$
Pair input i with output i.

Excercise 5.2

Yes, the closed loop system is stable.

Excercise 5.3

F2m is possibly somewhat faster than F1m but with more coupling.

Excercise 5.4

Fully decentralized. RGA=I. Pair input i with output i.

Excercise 5.5

Yes, the closed loop system is stable.

Excercise 5.6

Yes, it works better than F1m (decentralized control) and F2m (statically decoupled).

Excercise 6.1

Select $\alpha=1.1$. This gives $\gamma_{1}=1.87, \gamma_{2}=2.03, \gamma_{3}=1.82$. Yes, stable.

Excercise 6.2

Small coupling. Smoother levels.

