
Exam in Automatic Control III
Reglerteknik III 5hp

Date: December 12, 2011

Venue: Polacksbacken, skrivsal

Responsible teacher: Hans Norlander.

Aiding material: Textbooks (by Glad/Ljung), calculator, mathematical
handbooks, copies of OH slides.

Preliminary grades: 13p for grade 4, 21p for grade 5. Maximum score is
30p.

Use separate sheets for each problem, i.e. no more than one problem per
sheet. Write your exam code on every sheet.

Important: Your solutions should be well motivated unless else is stated
in the problem formulation! Vague or lacking motivations may lead to a
reduced number of points.

Your solutions can be given in Swedish or in English.

Good luck!



Problem 1 Consider the systemY (s) =
1s+ 1

�
4:5 s+3s+4

2

2 1

�U(s):
(a) Determine the relative gain array, RGA(G(s)). Assume that the system
should be controlled by decentralized control, with a cross-over frequency
of approximately 2 rad/s. Is there any input-output pairing that should be
preferred or avoided? (3p)

(b) Determine the poles and zeros of the system, including multiplicity.
What is the order of a minimal realisation of the system? (3p)

(c) Based on your results from (b), discuss possible constraints on the band-
width !B of the closed loop system considering that reasonable stability
margins should still be achievable. (2p)

(d) Design an IMC controller, using the �-tuning technique. Choose a rea-
sonable value of �. Also determine the resulting sensitivity function. (3p)

Problem 2 You have been asked to design a controller for a stable mini-
mum phase system, and are given the following specifications (interpreted in
control theory terminology):� jS(i!)j < 0:01 for ! � 1 rad/s� jT (i!)j < 0:01 for ! � 80 rad/s

(a) ”Translate” these specifications to corresponding requirements for the
loop gain jG(i!)Fy(i!)j. (3p)

(b) Use your expertise in control theory to judge whether or not these spec-
ifications are feasible for control design.
Hint: Bode’s relation might be useful. (3p)
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Problem 3 Robust loop shaping, according to Glover-McFarlane’s approach,
is used for the control of a DC motor. A preliminary proportional control is
used yielding the loop gain Go(s) =

24s(s+ 1)
:

The matrices X and Z are obtained as the solutions of the pertinent Riccati
equations, and XZ has the eigenvalues�1 = 0:1268 and �2 = 4:4357:
Then, for some � > 1, a robustifying controller Fy(s) is determined.

(a) Show that the system G1(s) =
24s(s� 1)

belong to the class of systems that are guaranteed to be stabilized by the
controller Fy(s) above (for some � > 1). (4p)

(b) Explain why the robust stability criterionk ∆GT k1< 1

never can be used to guarantee the stability of the closed loop system (for
any controller Fy(s)) for the case where Go(s) above is the nominal model
and G1(s) is a possible true system. (3p)

Problem 4 An inverted pendulum has the state space modelẋ1 = x2ẋ2 = sin x1 + u;
where x1 is the angular deviation from the vertical line (in erected position),
and u is the input in form of an external torque about the hinged attachment.

(a) Use the Lyapunov functionV (x) =
1

2
(x2

1 + x2
2)

as a tool for choosing the parameters �i and �i, i = 1; 2, in the control lawu = �(�1x1 + �2x2 + �1 sin x1 + �2 sin x2);
so that the equilibrium point x = 0 becomes asymptotically stable. (3p)

(b) When the inverted pendulum model is linearized around the equilibrium
point x = 0, the linear model has the poles �1. The system is supposed
to be stabilized by a linear sampling controller. Suggest a suitable sampling
interval in order to achieve reasonable performance. (3p)
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Solutions to the exam in Automatic Control III, 2011-12-12:

1. (a) Definition: RGA(G(s)) = G(s): � (G�1(s))T .G�1(s) = (s+ 1)
1

4:5 s+3s+4
� 4

�
1 �2�2 4:5 s+3s+4

�
=

(s+ 1)(s+ 4)

0:5(s� 5)

�
1 �2�2 4:5 s+3s+4

�
Thus

RGA(G(s)) =
2(s+ 4)s� 5

�
4:5 s+3s+4

�4�4 4:5 s+3s+4

�
=

�
9 s+3s�5

�8 s+4s�5�8 s+4s�5
9 s+3s�5

� :
Then we get

RGA(G(0)) =

��27
5

32
5

32
5

�27
5

� :
One should avoid pairing asociated with negative elements in RGA(G(0)),
so here the pairing u1 $ y1, u2 $ y2 should be avoided.
(b) The minors are xs+1

, 4:5(s+3)
(s+1)(s+4)

and

detG(s) =
1

(s+ 1)2

�
4:5s+ 3s+ 4

� 4

�
=

0:5(s� 5)

(s+ 1)2(s+ 4)
:

Theorem 3.5 ) the pole polynomial is the least common denominator of all
minors to G(s), which in this case is (s+1)2(s+4). The system has one pole
in �4 and a double pole in �1. A minimal realisation must then be of third
order. Theorem 3.6 ) the zero polynomial is the greatest common divisor
of the numerators of the maximal minors of G(s) (with the pole polynomial
as denominator). Here the maximal minor is detG(s) (as for all square
systems), and the zero polynomial is s� 5. The system has one zero in +5.
(c) Non-minimum phase zeros (in the right half plane) limit the achievable
bandwidth. A rule of thumb suggest !B < z=2 (where z is a RHP zero),
which here means that !B < 2:5 rad/s.
(d) With IMCFy(s) = (I�Q(s)G(s))�1Q(s); T (s) = G(s)Q(s) and S(s) = I�G(s)Q(s):
With �-tuning Q(s) = 1

(�s+1)nG�1(s), but this is not directly applicable whenG(s) has non-minimum phase zeros. In this caseG�1(s) =
(s+ 1)(s+ 4)

0:5(s� 5)

�
1 �2�2 4:5 s+3s+4

�
= �2(s+ 1)(s+ 4)

5(�s=5 + 1)

�
1 �2�2 4:5 s+3s+4

�
(from (a)), with a zero in +5. Two standard solutions (according to Glad/Ljung):
2. (a) Ignore the factor �s=5 + 1 )Q(s) =

�s=5 + 1

(�s + 1)2
G�1(s) = �2(s + 1)(s+ 4)

5(�s+ 1)2

�
1 �2�2 4:5 s+3s+4

�) Fy(s) = � 2(s+ 1)(s+ 4)s(�2s+ 2�+ 0:2)

�
1 �2�2 4:5 s+3s+4

� ;S(s) = I �G(s)Q(s) = I � �s=5 + 1

(�s+ 1)2
I =

s(�2s+ 2�+ 0:2)

(�s+ 1)2
I:
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2. (b) Replace the factor �s=5 + 1 with s=5 + 1 )Q(s) =
�s=5 + 1

(�s+ 1)(s=5 + 1)
G�1(s) = � 2(s+ 1)(s+ 4)

5(�s+ 1)(s=5 + 1)

�
1 �2�2 4:5 s+3s+4

�) Fy(s) = �2(s+ 1)(s+ 4)s(�s+ 5�+ 2)

�
1 �2�2 4:5 s+3s+4

� ;S(s) = I �G(s)Q(s) = I � �s=5 + 1

(�s+ 1)(s=5 + 1)
I =

s(�s+ 5�+ 2)

(�s+ 1)(s+ 5)
I:

The bandwidth is !B � 1=�, so a suitable choice here is e.g. � = 0:5.

2. (a) For small � the approximate relationsjS(i!)j < � , jG(i!)Fy(i!)j > 1=�; jT (i!)j < � , jG(i!)Fy(i!)j < �
hold. Here this means that the loop gain should be� jG(i!)Fy(i!)j > 1=0:01 = 100 for ! � 1 rad/s� jG(i!)Fy(i!)j < 0:01 for ! � 80 rad/s.

(b) The cross-over frequency ! must lie in the interval [1; 80] rad/s. Bode’s
relation states that for a minimum phase system

argG(i!) =

Z 1�1 ddxf(x) (x� log!)dx;
where  (x) = log ex+1jex�1j , f(x) = log jG(i!)j and x = log x. Thus ddxf(x) is
the slope of the amplitude curve in the Bode plot. In intervals where there
are only small variations in the slope, a good approximation is argG(i!) ��
2
ddxf(x). For a stable closed loop system argG(i!) > �� is required (the

Nyquist criterion), and for reasonable performance the phase margin should
be sufficiently large. Thus the slope around ! should be larger than �2.
Approximate f(x) with a straight line such that the specifications in (a) are
fulfilled, i.e. f(x) = kx +m; f(x1) = y1; f(x2) = y2;
where x1 = log 1, x2 = log 80, y1 = log 100 and y2 = log 0:01. The slope is
then k =

y2 � y1x2 � x1

=
log 0:01� log 100

log 80� log 0
=

log 0:0001

log 80
� �2:1:

Thus, it will be hard to find a stabilizing controller giving reasonable perfor-
mance and stability margins.

3. (a) Let Go(s) = M�1(s)N(s) be a nominal model, where M(s) and N(s)
are stable rational transfer functions given byI = MT (�s)M(s) +NT (�s)N(s):
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Then all transfer functions given byGp(s) = (M(s) + ∆M (s))�1(N(s) + ∆N (s));
where ∆M(s) and ∆N (s) are any stable transfer functions for which the con-
dition k �∆M (s) ∆N(s)� k1< 1= is fulfilled, are stabilized by the Glover-
McFarlane controller Fy(s) based on the nominal model. For this present
SISO system we can writeG(s) =

N(s)M(s) =

24s2+�s+�s(s+1)s2+�s+� ;
where �; � > 0 (M(s) and N(s) must be stable). With ∆N (s) = 0 and
∆M (s) = � 2ss2+�s+� we getN(s) + ∆N(s)M(s) + ∆M(s) =

24s2+�s+�s(s+1)�2ss2+�s+� =
24s(s� 1)

= G1(s)
We have �m = 4:4357 as the greatest eigenvalue of XZ, and thus = �p1 + �m >p

1 + �m � 2:3315:
We must find � and � and then show that j∆M(i!)j < 1= � 0:4289 for all! (since k �∆M ∆N� k1=k ∆M k1, as ∆N = 0). First find � and �:

1 = M(�s)M(s) +N(�s)N(s) ,
(s2 � �s+ �)(s2 + �s+ �) = (s2 � s)(s2 + s) + 242, s4 + (2� � �2)s+ �2 = s4 � s2 + 242

Equating coefficients for equal powers of s gives(
2� � �2 = �1�2 = 242

) (� = 7� = 24

We getj∆M(i!)j2 =
(2!)2

(24� !2)2 + (7!)2
=

4!2!4 + !2 + 242
=

4xx2 + x+ 242
= f(x)

with x = !2. To find maximum, solve 0 = dfdx :

0 =
dfdx =

4(x2 + x + 242)� 4x(2x+ 1)

(x2 + x+ 242)2
=

4(�x2 + 242)

(x2 + x + 242)2
)x = 24 ) j∆M(i!)j �pf(24) =

r
4 � 24

242 + 24 + 242
� 0:286 < 1 ;
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which proves the statement.
(b) With G1(s) = Go(1 + ∆G(s)) we have

∆G(s) =
G1(s)�Go(s)Go(s) =

24s(s�1)
� 24s(s+1)

24s(s+1)

=
2s� 1

:
Since ∆G(s) is unstable the small gain theorem is not applicable.

4. (a) We getV̇ = x1ẋ1 + x2ẋ2 = x1x2 + x2 sin x1 + x2u
= x1x2 + x2 sin x1 � �1x1x2 � �2x2

2 � �1x2 sin x1 � �2x2 sin x2;
so with �1 = 1, �1 = 1, �2 > 0 and �2 = 0 we have V̇ = ��2x2

2 � 0. Sinceẋ2 = sin x1 6= 0, except for x1 = 0, in the interval jx1j < �, no solution can
stay where V̇ = 0 outside x = 0, and according to Theorem 12.4 x = 0 is an
asymptotically stable equilibrium point.
(b) According to the rule of thumb the bandwidth should be chosen !B > 2p
where p is an unstable pole. Thus we should have !B > 2 rad/s. Furthermore,
the sampling frequency should be chosen as at least !s � 10!B. So !s � 20
rad/s ) h � 2�!s � 0:31 seconds.
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