Exam in Automatic Control III Reglerteknik III 5hp

Date: December 12, 2011

Venue: Polacksbacken, skrivsal
Responsible teacher: Hans Norlander.
Aiding material: Textbooks (by Glad/Ljung), calculator, mathematical handbooks, copies of OH slides.

Preliminary grades: 13 p for grade 4,21 p for grade 5 . Maximum score is 30p.

Use separate sheets for each problem, i.e. no more than one problem per sheet. Write your exam code on every sheet.

Important: Your solutions should be well motivated unless else is stated in the problem formulation! Vague or lacking motivations may lead to a reduced number of points.

Your solutions can be given in Swedish or in English.

Problem 1 Consider the system

$$
Y(s)=\frac{1}{s+1}\left[\begin{array}{cc}
4.5 \frac{s+3}{s+4} & 2 \\
2 & 1
\end{array}\right] U(s)
$$

(a) Determine the relative gain array, $\operatorname{RGA}(G(s))$. Assume that the system should be controlled by decentralized control, with a cross-over frequency of approximately $2 \mathrm{rad} / \mathrm{s}$. Is there any input-output pairing that should be preferred or avoided?
(b) Determine the poles and zeros of the system, including multiplicity. What is the order of a minimal realisation of the system?
(c) Based on your results from (b), discuss possible constraints on the bandwidth ω_{B} of the closed loop system considering that reasonable stability margins should still be achievable.
(d) Design an IMC controller, using the λ-tuning technique. Choose a reasonable value of λ. Also determine the resulting sensitivity function.

Problem 2 You have been asked to design a controller for a stable minimum phase system, and are given the following specifications (interpreted in control theory terminology):

- $|S(i \omega)|<0.01$ for $\omega \leq 1 \mathrm{rad} / \mathrm{s}$
- $|T(i \omega)|<0.01$ for $\omega \geq 80 \mathrm{rad} / \mathrm{s}$
(a) "Translate" these specifications to corresponding requirements for the loop gain $\left|G(i \omega) F_{y}(i \omega)\right|$.
(b) Use your expertise in control theory to judge whether or not these specifications are feasible for control design.
Hint: Bode's relation might be useful.

Problem 3 Robust loop shaping, according to Glover-McFarlane's approach, is used for the control of a DC motor. A preliminary proportional control is used yielding the loop gain

$$
G_{o}(s)=\frac{24}{s(s+1)}
$$

The matrices X and Z are obtained as the solutions of the pertinent Riccati equations, and $X Z$ has the eigenvalues

$$
\lambda_{1}=0.1268 \quad \text { and } \quad \lambda_{2}=4.4357
$$

Then, for some $\alpha>1$, a robustifying controller $F_{y}(s)$ is determined.
(a) Show that the system

$$
G_{1}(s)=\frac{24}{s(s-1)}
$$

belong to the class of systems that are guaranteed to be stabilized by the controller $F_{y}(s)$ above (for some $\alpha>1$).
(b) Explain why the robust stability criterion

$$
\left\|\Delta_{G} T\right\|_{\infty}<1
$$

never can be used to guarantee the stability of the closed loop system (for any controller $\left.F_{y}(s)\right)$ for the case where $G_{o}(s)$ above is the nominal model and $G_{1}(s)$ is a possible true system.

Problem 4 An inverted pendulum has the state space model

$$
\begin{aligned}
& \dot{x}_{1}=x_{2} \\
& \dot{x}_{2}=\sin x_{1}+u
\end{aligned}
$$

where x_{1} is the angular deviation from the vertical line (in erected position), and u is the input in form of an external torque about the hinged attachment.
(a) Use the Lyapunov function

$$
V(x)=\frac{1}{2}\left(x_{1}^{2}+x_{2}^{2}\right)
$$

as a tool for choosing the parameters α_{i} and $\beta_{i}, i=1,2$, in the control law

$$
u=-\left(\alpha_{1} x_{1}+\alpha_{2} x_{2}+\beta_{1} \sin x_{1}+\beta_{2} \sin x_{2}\right)
$$

so that the equilibrium point $x=0$ becomes asymptotically stable.
(b) When the inverted pendulum model is linearized around the equilibrium point $x=0$, the linear model has the poles ± 1. The system is supposed to be stabilized by a linear sampling controller. Suggest a suitable sampling interval in order to achieve reasonable performance.

Solutions to the exam in Automatic Control III, 2011-12-12:

1. (a) Definition: $\operatorname{RGA}(G(s))=G(s) \cdot *\left(G^{-1}(s)\right)^{T}$.

$$
G^{-1}(s)=(s+1) \frac{1}{4.5 \frac{s+3}{s+4}-4}\left[\begin{array}{cc}
1 & -2 \\
-2 & 4.5 \frac{s+3}{s+4}
\end{array}\right]=\frac{(s+1)(s+4)}{0.5(s-5)}\left[\begin{array}{cc}
1 & -2 \\
-2 & 4.5 \frac{s+3}{s+4}
\end{array}\right]
$$

Thus

$$
\operatorname{RGA}(G(s))=\frac{2(s+4)}{s-5}\left[\begin{array}{cc}
4.5 \frac{s+3}{s+4} & -4 \\
-4 & 4.5 \frac{s+3}{s+4}
\end{array}\right]=\left[\begin{array}{cc}
9 \frac{s+3}{s-5} & -8 \frac{s+4}{s-5} \\
-8 \frac{s+4}{s-5} & 9 \frac{s+3}{s-5}
\end{array}\right] .
$$

Then we get

$$
\operatorname{RGA}(G(0))=\left[\begin{array}{cc}
-\frac{27}{5} & \frac{32}{5} \\
\frac{32}{5} & -\frac{27}{5}
\end{array}\right]
$$

One should avoid pairing asociated with negative elements in $\operatorname{RGA}(G)(0))$, so here the pairing $u_{1} \leftrightarrow y_{1}, u_{2} \leftrightarrow y_{2}$ should be avoided.
(b) The minors are $\frac{x}{s+1}, \frac{4.5(s+3)}{(s+1)(s+4)}$ and

$$
\operatorname{det} G(s)=\frac{1}{(s+1)^{2}}\left(4.5 \frac{s+3}{s+4}-4\right)=\frac{0.5(s-5)}{(s+1)^{2}(s+4)}
$$

Theorem $3.5 \Rightarrow$ the pole polynomial is the least common denominator of all minors to $G(s)$, which in this case is $(s+1)^{2}(s+4)$. The system has one pole in -4 and a double pole in -1 . A minimal realisation must then be of third order. Theorem $3.6 \Rightarrow$ the zero polynomial is the greatest common divisor of the numerators of the maximal minors of $G(s)$ (with the pole polynomial as denominator). Here the maximal minor is $\operatorname{det} G(s)$ (as for all square systems), and the zero polynomial is $s-5$. The system has one zero in +5 . (c) Non-minimum phase zeros (in the right half plane) limit the achievable bandwidth. A rule of thumb suggest $\omega_{B}<z / 2$ (where z is a RHP zero), which here means that $\omega_{B}<2.5 \mathrm{rad} / \mathrm{s}$.
(d) With IMC

$$
F_{y}(s)=(I-Q(s) G(s))^{-1} Q(s), \quad T(s)=G(s) Q(s) \quad \text { and } \quad S(s)=I-G(s) Q(s)
$$

With λ-tuning $Q(s)=\frac{1}{(\lambda s+1)^{n}} G^{-1}(s)$, but this is not directly applicable when $G(s)$ has non-minimum phase zeros. In this case

$$
G^{-1}(s)=\frac{(s+1)(s+4)}{0.5(s-5)}\left[\begin{array}{cc}
1 & -2 \\
-2 & 4.5 \frac{s+3}{s+4}
\end{array}\right]=-\frac{2(s+1)(s+4)}{5(-s / 5+1)}\left[\begin{array}{cc}
1 & -2 \\
-2 & 4.5 \frac{s+3}{s+4}
\end{array}\right]
$$

(from (a)), with a zero in +5 . Two standard solutions (according to Glad/Ljung):
2. (a) Ignore the factor $-s / 5+1 \Rightarrow$

$$
\begin{aligned}
Q(s) & =\frac{-s / 5+1}{(\lambda s+1)^{2}} G^{-1}(s)=-\frac{2(s+1)(s+4)}{5(\lambda s+1)^{2}}\left[\begin{array}{cc}
1 & -2 \\
-2 & 4.5 \frac{s+3}{s+4}
\end{array}\right] \\
& \Rightarrow \quad F_{y}(s)=-\frac{2(s+1)(s+4)}{s\left(\lambda^{2} s+2 \lambda+0.2\right)}\left[\begin{array}{cc}
1 & -2 \\
-2 & 4.5 \frac{s+3}{s+4}
\end{array}\right] \\
S(s) & =I-G(s) Q(s)=I-\frac{-s / 5+1}{(\lambda s+1)^{2}} I=\frac{s\left(\lambda^{2} s+2 \lambda+0.2\right)}{(\lambda s+1)^{2}} I .
\end{aligned}
$$

2. (b) Replace the factor $-s / 5+1$ with $s / 5+1 \Rightarrow$

$$
\begin{gathered}
Q(s)=\frac{-s / 5+1}{(\lambda s+1)(s / 5+1)} G^{-1}(s)=-\frac{2(s+1)(s+4)}{5(\lambda s+1)(s / 5+1)}\left[\begin{array}{cc}
1 & -2 \\
-2 & 4.5 \frac{s+3}{s+4}
\end{array}\right] \\
\Rightarrow \quad F_{y}(s)=-\frac{2(s+1)(s+4)}{s(\lambda s+5 \lambda+2)}\left[\begin{array}{cc}
1 & -2 \\
-2 & 4.5 \frac{s+3}{s+4}
\end{array}\right] \\
S(s)=I-G(s) Q(s)=I-\frac{-s / 5+1}{(\lambda s+1)(s / 5+1)} I=\frac{s(\lambda s+5 \lambda+2)}{(\lambda s+1)(s+5)} I
\end{gathered}
$$

The bandwidth is $\omega_{B} \approx 1 / \lambda$, so a suitable choice here is e.g. $\lambda=0.5$.
2. (a) For small ϵ the approximate relations
$|S(i \omega)|<\epsilon \quad \Leftrightarrow \quad\left|G(i \omega) F_{y}(i \omega)\right|>1 / \epsilon, \quad|T(i \omega)|<\epsilon \quad \Leftrightarrow \quad\left|G(i \omega) F_{y}(i \omega)\right|<\epsilon$
hold. Here this means that the loop gain should be

- $\left|G(i \omega) F_{y}(i \omega)\right|>1 / 0.01=100$ for $\omega \leq 1 \mathrm{rad} / \mathrm{s}$
- $\left|G(i \omega) F_{y}(i \omega)\right|<0.01$ for $\omega \geq 80 \mathrm{rad} / \mathrm{s}$.
(b) The cross-over frequency ω_{c} must lie in the interval $[1,80] \mathrm{rad} / \mathrm{s}$. Bode's relation states that for a minimum phase system

$$
\arg G(i \omega)=\int_{-\infty}^{\infty} \frac{d}{d x} f(x) \psi(x-\log \omega) d x
$$

where $\psi(x)=\log \frac{e^{x}+1}{\left|e^{x}-1\right|}, f(x)=\log |G(i \omega)|$ and $x=\log x$. Thus $\frac{d}{d x} f(x)$ is the slope of the amplitude curve in the Bode plot. In intervals where there are only small variations in the slope, a good approximation is $\arg G(i \omega) \approx$ $\frac{\pi}{2} \frac{d}{d x} f(x)$. For a stable closed loop system $\arg G\left(i \omega_{c}\right)>-\pi$ is required (the Nyquist criterion), and for reasonable performance the phase margin should be sufficiently large. Thus the slope around ω_{c} should be larger than -2 . Approximate $f(x)$ with a straight line such that the specifications in (a) are fulfilled, i.e.

$$
f(x)=k x+m, \quad f\left(x_{1}\right)=y_{1}, \quad f\left(x_{2}\right)=y_{2},
$$

where $x_{1}=\log 1, x_{2}=\log 80, y_{1}=\log 100$ and $y_{2}=\log 0.01$. The slope is then

$$
k=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{\log 0.01-\log 100}{\log 80-\log 0}=\frac{\log 0.0001}{\log 80} \approx-2.1 .
$$

Thus, it will be hard to find a stabilizing controller giving reasonable performance and stability margins.
3. (a) Let $G_{o}(s)=M^{-1}(s) N(s)$ be a nominal model, where $M(s)$ and $N(s)$ are stable rational transfer functions given by

$$
I=M^{T}(-s) M(s)+N^{T}(-s) N(s) .
$$

Then all transfer functions given by

$$
G_{p}(s)=\left(M(s)+\Delta_{M}(s)\right)^{-1}\left(N(s)+\Delta_{N}(s)\right),
$$

where $\Delta_{M}(s)$ and $\Delta_{N}(s)$ are any stable transfer functions for which the condition $\|\left[\begin{array}{ll}\Delta_{M}(s) & \left.\Delta_{N}(s)\right] \|_{\infty}<1 / \gamma \text { is fulfilled, are stabilized by the Glover- }\end{array}\right.$ McFarlane controller $F_{y}(s)$ based on the nominal model. For this present SISO system we can write

$$
G(s)=\frac{N(s)}{M(s)}=\frac{\frac{24}{s^{2}+\alpha s+\beta}}{\frac{s(s+1)}{s^{2}+\alpha s+\beta}},
$$

where $\alpha, \beta>0\left(M(s)\right.$ and $N(s)$ must be stable). With $\Delta_{N}(s)=0$ and $\Delta_{M}(s)=-\frac{2 s}{s^{2}+\alpha s+\beta}$ we get

$$
\frac{N(s)+\Delta_{N}(s)}{M(s)+\Delta_{M}(s)}=\frac{\frac{24}{s^{2}+\alpha s+\beta}}{\frac{s(s+1)-2 s}{s^{2}+\alpha s+\beta}}=\frac{24}{s(s-1)}=G_{1}(s)
$$

We have $\lambda_{m}=4.4357$ as the greatest eigenvalue of $X Z$, and thus

$$
\gamma=\alpha \sqrt{1+\lambda_{m}}>\sqrt{1+\lambda_{m}} \approx 2.3315
$$

We must find α and β and then show that $\left|\Delta_{M}(i \omega)\right|<1 / \gamma \approx 0.4289$ for all ω (since $\left\|\left[\begin{array}{ll}\Delta_{M} & \Delta_{N}\end{array}\right]\right\|_{\infty}=\left\|\Delta_{M}\right\|_{\infty}$, as $\Delta_{N}=0$). First find α and β :

$$
\begin{gathered}
1=M(-s) M(s)+N(-s) N(s) \Leftrightarrow \\
\left(s^{2}-\alpha s+\beta\right)\left(s^{2}+\beta s+\alpha\right)=\left(s^{2}-s\right)\left(s^{2}+s\right)+24^{2} \\
\Leftrightarrow \quad s^{4}+\left(2 \beta-\alpha^{2}\right) s+\beta^{2}=s^{4}-s^{2}+24^{2}
\end{gathered}
$$

Equating coefficients for equal powers of s gives

$$
\left\{\begin{array} { l l }
{ 2 \beta - \alpha ^ { 2 } } & { = - 1 } \\
{ \beta ^ { 2 } } & { = 2 4 ^ { 2 } }
\end{array} \Rightarrow \left\{\begin{array}{ll}
\alpha & =7 \\
\beta & =24
\end{array}\right.\right.
$$

We get

$$
\left|\Delta_{M}(i \omega)\right|^{2}=\frac{(2 \omega)^{2}}{\left(24-\omega^{2}\right)^{2}+(7 \omega)^{2}}=\frac{4 \omega^{2}}{\omega^{4}+\omega^{2}+24^{2}}=\frac{4 x}{x^{2}+x+24^{2}}=f(x)
$$

with $x=\omega^{2}$. To find maximum, solve $0=\frac{d f}{d x}$:

$$
\begin{aligned}
0= & \frac{d f}{d x}=\frac{4\left(x^{2}+x+24^{2}\right)-4 x(2 x+1)}{\left(x^{2}+x+24^{2}\right)^{2}}=\frac{4\left(-x^{2}+24^{2}\right)}{\left(x^{2}+x+24^{2}\right)^{2}} \quad \Rightarrow \\
& x=24 \Rightarrow\left|\Delta_{M}(i \omega)\right| \leq \sqrt{f(24)}=\sqrt{\frac{4 \cdot 24}{24^{2}+24+24^{2}}} \approx 0.286<\frac{1}{\gamma},
\end{aligned}
$$

which proves the statement.
(b) With $G_{1}(s)=G_{o}\left(1+\Delta_{G}(s)\right)$ we have

$$
\Delta_{G}(s)=\frac{G_{1}(s)-G_{o}(s)}{G_{o}(s)}=\frac{\frac{24}{s(s-1)}-\frac{24}{s(s+1)}}{\frac{24}{s(s+1)}}=\frac{2}{s-1} .
$$

Since $\Delta_{G}(s)$ is unstable the small gain theorem is not applicable.
4. (a) We get

$$
\begin{aligned}
\dot{V}=x_{1} \dot{x}_{1} & +x_{2} \dot{x}_{2}=x_{1} x_{2}+x_{2} \sin x_{1}+x_{2} u \\
& =x_{1} x_{2}+x_{2} \sin x_{1}-\alpha_{1} x_{1} x_{2}-\alpha_{2} x_{2}^{2}-\beta_{1} x_{2} \sin x_{1}-\beta_{2} x_{2} \sin x_{2}
\end{aligned}
$$

so with $\alpha_{1}=1, \beta_{1}=1, \alpha_{2}>0$ and $\beta_{2}=0$ we have $\dot{V}=-\alpha_{2} x_{2}^{2} \leq 0$. Since $\dot{x}_{2}=\sin x_{1} \neq 0$, except for $x_{1}=0$, in the interval $\left|x_{1}\right|<\pi$, no solution can stay where $\dot{V}=0$ outside $x=0$, and according to Theorem $12.4 x=0$ is an asymptotically stable equilibrium point.
(b) According to the rule of thumb the bandwidth should be chosen $\omega_{B}>2 p$ where p is an unstable pole. Thus we should have $\omega_{B}>2 \mathrm{rad} / \mathrm{s}$. Furthermore, the sampling frequency should be chosen as at least $\omega_{s} \geq 10 \omega_{B}$. So $\omega_{s} \geq 20$ $\mathrm{rad} / \mathrm{s} \Rightarrow h \leq \frac{2 \pi}{\omega_{s}} \approx 0.31$ seconds.

