
Exam in Automatic Control III
Reglerteknik III 5hp

Date: December 17, 2012

Venue: Polacksbacken, skrivsal

Responsible teacher: Hans Norlander.

Aiding material: Textbooks (by Glad/Ljung), calculator, mathematical
handbooks, copies of OH slides.

Preliminary grades: 13p for grade 4, 21p for grade 5. Maximum score is
30p.

Use separate sheets for each problem, i.e. no more than one problem per
sheet. Write your exam code on every sheet.

Important: Your solutions should be well motivated unless else is stated
in the problem formulation! Vague or lacking motivations may lead to a
reduced number of points.

Your solutions can be given in Swedish or in English.

Good luck!



Problem 1

(a) Determine the poles and zeros, including multiplicity, for the system

ẋ(t) =

2

4

�1 0 0
0 0 0
0 1 0

3

5

x(t) +

2

4

1 0
0 1
0 0

3

5

u(t);

y(t) =

�

1 1 0
�1 0 1

�

x(t):

Also show that the system is a minimal realisation. (3p)

(b) The system

ẋ(t) =

�

2 1
1 0

�

x(t) +

�

1
0

�

u(t);

y(t) =
�

1 �2
�

x(t)

is both unstable and has a non-minimum phase zero (in the RHP). A seem-
ingly clever control engineer proposed the observer based state feedback con-
trol law u(t) = �Lx̂(t) + y

ref

(t), with the feedback and observer gains

L =
�

1 �1
�

and K =

�

40
17

�

;

as a remedy for these flaws. Verify that this controller indeed yields the
closed loop system

Y (s) =
1

s + 1
Y

ref

(s):

(2p)

(c) Is the closed loop system in (b) internally stable? (3p)
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Problem 2

(a) Find all equilibria (stationary points) for the system

ẋ1 = x2;

ẋ2 = �x1 � x2(1� x

2
1 � x

2
2):

Characterize the equilibria in terms of stability and behaviour. (3p)

(b) The Lorenz attractor is a well known system with a chaotic behaviour,
and a commonly used version (the original) is

ẋ1 = 10(x2 � x1) + u;

ẋ2 = x1

�

8

3
� x3

�

� x2;

ẋ3 = x1x2 � 28x3;

where the input u is added here merely for the purpose of this problem.
Assume that x2 is measured, and thereby available for feedback. Find a
feedback u = u(x2) that makes the origin x = 0 an asymptotically stable
stationary point. The stability must be proven. (4p)
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Problem 3 The system

8

>

<

>

:

ẋ = Ax + Bu;

z̄ = Cx;

y = Cx + w;

, G(s) = C(sI � A)�1
B;

where w is a measurement disturbance, is to be controlled by an H
1

con-
troller, designed using the frequency weightings

W

S

(s) =
K

S

s + �

S

; W

T

(s) = K

T

s + �

T

s + �

T

; W

u

(s) = K

u

:

(a) Give a state space model representing the extended open loop system
(i.e. incorporating the frequency weightings). (2p)

(b) The following specifications should be fulfilled:

1. The controller F
y

(s) should have integral action.

2. The bandwidth of the closed loop system should be approximately
2 rad/s.

3. The effect of w on z̄ = Cx should never be amplified more than 50 %,
and it should be attenuated at least 100 times for frequencies ! � 314
rad/s (= 50 Hz).

4. For the input juj < 4 should hold.

Suggest appropriate values of the parameters K
S

; �

S

; K

T

; �

T

; �

T

; K

u

in the
frequency weightings, so that the specifications 1–4 are fulfilled if

k W

S

S k

1

< 1; k W

T

T k

1

< 1; kW

u

G

wu

k

1

< 1: (1)

(3p)

(c) It turns out that G(s) has a pole in s = +1. Discuss the consequencies
of this — is it possible obtain (1) with the frequency weightings you have
chosen in (b)? (2p)
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Problem 4

(a) Consider the square (m inputs and m outputs) system
(

ẋ = Ax + Bu;

y = Cx + Du

, G(s) = C(sI � A)�1
B + D;

where detD 6= 0. Show that the state space model
(

ẋ = (A� BD

�1
C)x + BD

�1
y;

u = �D

�1
Cx + D

�1
y;

is a representation of the inverse system U(s) = G

�1(s)Y (s). (1p)
Now consider the strictly proper nth order system

(

ẋ = Ax + Bu;

y = Cx:

Associated to the system is the Hamiltonian matrix,

H(�) =

�

A �BB

T

�C

T

C �A

T

�

;

which is of theoretical interest for several reasons.

(b) Let � denote any eigenvalue of H(�). Show that also �� is an eigenvalue
of H(�). (This means that the eigenvalues of H(�) are symmetric about the
imaginary axis.) Hint: With H(�)v = �v, show that wT

H(�) = ��w

T with

w =

�

0 �I

I 0

�

v. (1p)

(c) Let Λ, V1 and V2 be real-valued n� n matrices such that

H(�1)

�

V1

V2

�

=

�

V1

V2

�

Λ:

Show that X = V2V
�1

1 is a solution to the algebraic Riccati equation (ARE)

0 = A

T

X + XA�XBB

T

X + C

T

C

(which is one of the AREs associated to the Glover-McFarlane robust loop
shaping procedure). (3p)

(d) Let G(s) = C(sI�A)�1
B be the transfer function for the strictly proper

system above. Show that for all 
 >k G k

1

the Hamiltonian H(
�2) will
have no eigenvalues on the imaginary axis.
Hints: Use e.g.

� the results in (a) and (b)

� k G k

1

< 
 , 


2
I �G

�(i!)G(i!) > 0, 8! (where G�(i!) = G

T (�i!))

� The zeros of G(s) are the poles of G�1(s)

(3p)
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Solutions to the exam in Automatic Control III, 2012-12-17:

1. (a) First note that the A-matrix is lower triangular, so its eigenvalues
are found in the diagonal. The eigenvalues are �1, 0 and 0. Since it is a
minimal realisation (shown below) the eigenvalues are also the poles of the
system (Def. 3.4).
According to Def. 3.5 the zeros are the s for which the matrix

M(s) =

�

sI � A B

�C D

�

=

2

6

6

6

6

4

s + 1 0 0 1 0
0 s 0 0 1
0 �1 s 0 0
�1 �1 0 0 0
1 0 �1 0 0

3

7

7

7

7

5

loses rank. Since M(s) is quadratic here it loses rank exactly when detM(s) =
0, and

detM(s) = s + 1;

so there is one zero in �1.
A minimal realisation is both controllable and observable. This can be
checked e.g. by the PBH rank tests (Thm 3.3):
The system is controllable iff the matrix

�

A� �I B

�

has full rank for all �
(and it suffices the check for the eigenvalues of A). Here

�

A� �I B

�

=

2

4

�1 � � 0 0 1 0
0 �� 0 0 1
0 1 �� 0 0

3

5

;

which will have full rank since columns 2, 4 and 5 are linearly independent

for all �. The system is observable iff the matrix

�

A� �I

C

�

has full rank for

all �. Here

�

A� �I

C

�

=

2

6

6

6

6

4

�1� � 0 0
0 �� 0
0 1 ��

1 1 0
�1 0 1

3

7

7

7

7

5

;

which has full rank for all �, since rows 4 and 5 are linearly independent
with row 2 for � 6= 0 and with row 3 for � 6= �1. Thus, both observable and
controllable ) minimal realisation. There is one pole in �1 and a double
pole in the origin, and there is one zero in �1. (Note that there are both a
pole and a zero in �1 which do not cancel each other — this is only possible
for MIMO systems.)
(b) We have (also when using an observer)

G




(s) = C(sI � A + BL)�1
B =

�

1 �2
�

�

s� 1 �2
�1 s

�

�1 �
1
0

�

=
1

s

2
� s� 2

�

1 �2
�

�

s 2
1 s� 1

� �

1
0

�

=
s� 2

(s + 1)(s� 2)
=

1

s + 1
:

1



(c) For internal stability we need to check S, SG and F

y

S (and S

u

, but for
SISO systems S

u

= S). We need G(s) and F

y

(s):

G(s) = C(sI � A)�1
B =

�

1 �2
�

�

s� 2 �1
�1 s

�

�1 �
1
0

�

=
s� 2

s

2
� 2s� 1

;

F

y

(s) = L(sI � A + BL + KC)�1
K =

�

1 �1
�

�

s + 39 �82
16 s� 34

�

�1 �
40
17

�

=
23s+ 11

s

2 + 5s� 14
=

23s + 11

(s� 2)(s + 7)
:

The loop gain is then

G(s)F
y

(s) =
s� 2

s

2
� 2s� 1

�

23s + 11

(s� 2)(s + 7)
=

23s+ 11

(s2
� 2s� 1)(s + 7)

;

and the sensitivity function becomes

S(s) =
1

1 + G(s)F
y

(s)
=

1

1 + 23s+11
(s2
�2s�1)(s+7)

=
(s2

� 2s� 1)(s + 7)

(s2
� 2s� 1)(s + 7) + 23s + 11

=
(s2

� 2s� 1)(s+ 7)

s

3 + 5s2 + 8s+ 4
=

(s2
� 2s� 1)(s+ 7)

(s + 1)(s + 2)2
;

which clearly is stable (can be checked e.g. by Routh’s algorithm if the poles
are not found). Also S(s)G(s) is stable since (s2

� 2s � 1) is cancelled.
However,

F

y

(s)S(s) =
23s+ 11

(s� 2)(s + 7)
�

(s2
� 2s� 1)(s + 7)

(s + 1)(s+ 2)2
=

(23s+ 11)(s2
� 2s� 1)

(s� 2)(s + 1)(s + 2)2
;

which is unstable. Hence, the closed loop system is not internally stable.

2. (a) For a stationary point ẋ1 = ẋ2 = 0 must hold. ẋ1 = 0 ) x2 = 0,
and using this in ẋ2 = 0 ) 0 = �x1. The origin, x1 = x2 = 0, is the only
equilibrium. Linearize the system around x = 0:

ẋ = Ax; A =
�f

�x

=

�

0 1
�1 + 2x1x2 �1 + 3x2

2

�

x=0

=

�

0 1
�1 �1

�

:

A has eigenvalues �0:5� i

p

0:75, meaning that x = 0 is a stable focus.
(b) Try with a linear feedback, u = �Kx2, giving the closed loop system

ẋ1 = 10(x2 � x1)�Kx2;

ẋ2 = x1

�

8

3
� x3

�

� x2;

ẋ3 = x1x2 � 28x3:
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Linearizing the system about the origin gives

A




=
�f




�x

=

2

4

�10 10�K 0
8=3 �1 �x1

x2 x1 �28

3

5

x=0

=

2

4

�10 10�K 0
8=3 �1 0
0 0 �28

3

5

:

The eigenvalues are the zeros of the characteristic polynomial

det(sI � A




) = det

2

4

s + 10 �10 + K 0
�8=3 s + 1 0

0 0 s + 28

3

5

= (s + 28)

�

(s + 10)(s+ 1) +
8

3
(�10 + K)

�

= (s + 28)
�

s

2 + 11s+ (8K � 50)=3
�

;

and for asymptotical stability (locally) it suffices to have the eigenvalues
strictly in the left half plane (Thm 12.1). This is fulfilled if 8K � 50 > 0, so
choose e.g. K = 10. Stability follows according to Theorem 12.1.

3. (a) Introduce Z1(s) = W

u

(s)U(s) = K

u

U(s), Z2(s) = W

T

(s)Z̄(s) =
K

T

s+�
T

s+�
T

CX(s) and Z3(s) = W

S

(s)Y (s) = K

S

s+�
S

(CX(s) + W (s)). We need
some extra states to account for the dynamics in W

S

(s) and in W

T

(s). In-
troduce x

S

= z3 ) sX

S

(s) = ��

S

X

S

(s) + K

S

CX(s) + K

S

W (s) , ẋ

S

=

��

S

x

S

+K

S

Cx+K

S

w. Furthermore, notice that W
T

(s) = K

T

�

1 + �

T

��

T

s+�
T

�

.

By choosing X

T

(s) = �

T

��

T

s+�
T

CX(s) we get

z2 = K

T

(Cx + x

T

) and sX

T

(s) = ��

T

X

T

(s) + (�
T

� �

T

)CX(s)

, ẋ

T

= ��

T

x

T

+ (�
T

� �

T

)Cx:

One possible state space representation for the extended open loop system is
then

2

4

ẋ

ẋ

S

ẋ

T

3

5 =

2

4

A 0 0
K

S

C ��

S

0
(�

T

� �

T

)C 0 ��

T

3

5

2

4

x

x

S

x

T

3

5 +

2

4

B

0
0

3

5

u +

2

4

0
K

S

0

3

5

w;

2

4

z1

z2

z3

3

5 =

2

4

0 0 0
0 1 0

K

T

C 0 K

T

3

5

2

4

x

x

S

x

T

3

5 +

2

4

K

u

0
0

3

5

u;

y =
�

C 0 0
�

2

4

x

x

S

x

T

3

5 + w:

(b) First note that (1) is equivalent to

jS(i!)j < 1=jW
S

(i!)j; jT (i!)j < 1=jW
T

(i!)j; jG

wu

(i!)j < 1=jW
u

(i!)j

for all !.
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1. Integral action in F

y

(s) ) S(0) = 0, which is obtained if W
S

(s) has a
pole in the origin ) choose �

S

= 0.

2. To get !
B

� 2 rad/s, try to get jT (i2)j � 1=
p

2 and/or jS(i2)j � 1=
p

2.

3. We should have jT (i!)j � 1:5 for all ! and jT (i!)j < 0:01 for ! � 314
rad/s.

4. Make jG
wu

(i!)j < 4 for all ! ) choose W
u

(s) = K

u

= 0:25.

To fix 2. choose K
S

so that 1=jW
S

(i2)j � 1=
p

2:

1

jW

S

(i!)j
=

!

K

S

; choose e.g. K

S

= 3 )

1

jW

S

(i2)j
=

2

3
<

1
p

2
:

To fix 3., notice that with �

T

> �

T

1

K

T

�

1

jW

T

(i!)j
=

p

!

2 + �

2
T

K

T

p

!

2 + �

2
T

�

�

T

K

T

�

T

The asymptotic amplitude curve is �

T

K

T

�

T

up to ! = �

T

, then decaying with

slope �1 up to ! = �

T

, and for higher frequencies it is 1
K

T

. We then must
have 1=K

T

< 0:01 and �
T

=K

T

�

T

� 1:5. Choose e.g. K
T

= 150 and �
T

= 300.
Then �

T

� �

T

=1:5K
T

= 300=225 = 4=3 must hold. With the choice �
T

= 4=3
we have

1

jW

T

(i314)j
=

p

3142 + 3002

150
p

3142 + (4=3)2
� 0:0092;

1

jW

T

(0)j
=

300

150 � (4=3)
= 1:5

and
1

jW

T

(i2)j
=

p

22 + 3002

150
p

22 + (4=3)2
� 0:83 >

1
p

2
:

(The latter inequality is to make sure that 2. is not violated.)

(c) W
T

(1) = 1501+4=3
1+300

� 1:16. According to Theorem 7.6 k W
T

T k

1

� 1 is
possible only if jW

T

(p)j � 1 for every right half plan pole p. Obviously that
does not hold in this case, so (1) cannot be met with the W

T

(s) in (b).

4. (a) From the output equation we directly get u = �D

�1
Cx + D

�1
y,

which, when plugged into the state equation, gives

ẋ = Ax + B(�D�1
Cx + D

�1
y) = (A� BD

�1
C)x + BD

�1
y:

(b) With v =

�

v1

v2

�

we get

H(�)v = �v ,

(

Av1 + �BB

T

v2 = �v1;

�C

T

Cv1 � A

T

v2 = �v2:

Using the hint we try with w =

�

0 �I

I 0

� �

v1

v2

�

=

�

�v2

v1

�

. Now

w

T

H(�) = �

T

)

(

�v

T

2 A� v

T

1 C
T

C = �

T

1 ;

�v

T

2 �BB
T

� v

T

1 A
T = �

T

2 :
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Comparing with the expressions above (take the transpose) we get
(

�1 = �C

T

Cv1 � A

T

v2 = �v2 = ��(�v2);

�2 = ��BB

T

v2 � Av1 = ��v1

) � = ��w;

which proves the statement.
(c) Λ, V1 and V2 are defined by

AV1 � BB

T

V2 = V1Λ; (2)

�C

T

CV1 � A

T

V2 = V2Λ: (3)

Multiplying (2) with V

�1
1 from the left yields Λ = V

�1
1 AV1 � V

�1
1 BB

T

V2,
which, when used in (3), gives

�C

T

CV1 � A

T

V2 = V2V
�1

1 AV1 � V2V
�1

1 BB

T

V2:

Multiplying this expression with V

�1
1 from the right and then moving all

terms to the right hand side results in the ARE

0 = A

T

V2V
�1

1 + V2V
�1

1 A� V2V
�1

1 BB

T

V2V
�1

1 + C

T

C

with X = V2V
�1

1 . (See also page 274 in the textbook by Glad/Ljung.)
(d) Start with k G k

1

< 
 ,




2
I �G

T (�i!)G(i!) > 0:

This can be interpreted as that the system with transfer function Ω(s) =



2
I�G

T (�s)G(s) has no zeros on the imaginary axis. This in its turn means
that the inverse Ω�1(s) has no poles on the imaginary axis. We now need to
show that H(
�2) is the A-matrix for a state space representation of Ω�1(s).
First notice that GT (�s) = B

T (�sI � A

T )�1
C

T = �B

T (sI � (�AT ))�1
C

T

which has the state space representation

ż = �A

T

z � C

T

y;

� = B

T

z:

Combining this with the state space model of G(s) (by setting � = G

T (�s)y =
G

T (�s)G(s)u and � = 


2
u� � = Ω(s)u), Ω(s) can be represented as

ẋ = Ax + Bu;

ż = �A

T

z � C

T

y = �C

T

Cx� A

T

z;

� = �B

T

z + 


2
u:

Using the same technique as in (a) a state space representation of the inverse
system is obtained by first noting that u = 


�2
B

T

z + 


�2
�, resulting in

ẋ = Ax + B(
�2
B

T

z + 


�2
�) = Ax + 


�2
BB

T

z + 


�2
B�;

ż = �C

T

Cx� A

T

z;

u = 


�2
B

T

z + 


�2
�:
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Introducing � =

�

x

z

�

the state space model for u = Ω�1(s)� can be written

as

�̇ =

�

A 


�2
BB

T

�C

T

C �A

T

�

� +

�




�2
B

0

�

�;

u =
�

0 


�2
B

T

�

� + 


�2
�:

Indeed, the A-matrix is the Hamiltonian H(
�2).
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