
A quick overview of Snort

Patrik Israelsson

Jerker Karlsson

Guillaume Giamarchi

October 17, 2005

Abstract

As a network administrator, you obviously want your systems secure and up
to date to avoid any security breaches. It might be reassuring to know that you’ve
done all you can to prevent attacks - but what knowledge do you have of what
attacks actually have been made, and whether they’ve been successful or not? An
attack, regardless of its success, is something you want to know about, and not
only that - you want to know all possible details about it. Where did the attack
come from? What tricks was the attacker trying to pull? What did the attacker
seem to be after? And in case the attack actually was successful, what damage has
been done? Has the attacker ’stolen’ sensitive information of any kind?
Enter the Network Intrusion Detection System. In the ideal case, a properly setup
NIDS will help you a great deal with the answers to all your questions. Suspicious
activity is recognized and logged for future reference. It’s also possible to take
action automatically based on the activity, though that’s not entirely within the
scope of the NIDS itself.

One NIDS that has gained a lot of popularity is Snort. In this essay, we will have
a look at how it works, what its main advantages are but also what problems one
may encounter in deploying it for use in a network.

1 Background - what is a network intrusion

detection system?

The idea of a network intrusion detection system is to have a device of some sort
that can ’hear’ all the traffic on its part of the network. It listens to this traffic,
and based on a set of defined rules, it will trigger an action of some kind on packets
that match one of the defined rules. One could think of its functionality as very
similar to that of antivirus software - scan content for stuff considered malicious,

1

and take action.
An example rule might, in common language, be: ”All packets sent on the http
port to a webserver on the network, that contain the string ’cmd.exe’”. Snort’s
default ruleset has an implementation of this rule - the reason we want to watch
out for this is it might imply that an attacker is trying to execute a command
shell on a webserver running Windows. We will look into exactly what this rule
looks like in Snort’s rule format later.

2 An introduction to Snort

2.1 Short history

Snort was created by Martin Roesch in 1998. As most open-source projects, it
started out as a small-scale application made just for fun, as an alternative to the
full-blown commercial intrusion detection systems. Today, Snort is used by many
many, both commercially and privately. All in all Snort has been downloaded from
the official site more than 2 million times, and spurs more than 100,000 active
users. In its most basic form it can be used as a regular packet sniffer (think
tcpdump), a packet logger or - most commonly - a network intrusion detection
system.
Snort nowadays is developed by Sourcefire (Martin Roesch’s own company) which
in turn recently was bought by security giants Checkpoint.

2.2 Usage

Like most NIDSs, it’s hard to talk about one specific use for Snort - there are
many uses for it depending on the needs of the user, but most commonly Snort
is deployed for keeping track of what’s going on within a network. In itself, Snort
doesn’t necessarily provide a good overview as it only does one thing: trigger on
specified traffic and take action in some way, where the action most often is the
logging of an alert. Therefore, Snort is often used with other systems giving the
user an overview of all alerts triggered, ACID1 being one example.
It’s also possible to have Snort interact with other services - for instance, it’s
possible to use it with iptables or similar firewall software for auto-blocking hosts
that seem to be doing things they’re not supposed to do.

2.3 Placement of the Snort device

An important decision when deploying a Snort device is where in the network to
put it. Inside or outside the firewall? On an Ethernet tap (more on this shortly)
where it will be inaccessible but also unable to react to malicious packets, or in

1http://www.andrew.cmu.edu/user/rdanyliw/snort/snortacid.html

2

a firewall/gateway position where its system have higher requirements on being
100% secure and also fast enough to both keep track of the traffic and not degrade
network performance?

Placing the IDS outside the firewall will most likely generate a lot more alerts,
many of which are not really dangerous since they are stopped by the firewall.
None the less, being aware of what kind of attacks are directed at you, even un-
successful, is sometimes useful.

A common technique is to have Snort run on a device that doesn’t actually
have an address on the network it’s sniffing - a so-called ’Ethernet tap’ is used.
An ethernet tap is a port on a device (a switch for instance) that mirrors all the
traffic passing through the device. This way, when the device running Snort is
connected through an Ethernet tap, there is no way for a potential attacker to
access the Snort device directly. This means that the integrity of the audit logs
are protected so that a successful attacker cannot cover his tracks.

As mentioned earlier, one could also use Snort as part of an active firewall system
reacting on potential attacks. In this case, apart from simply logging the packets,
Snort can for instance be told to take out the IP address of the potential attacking
host and pass it on to the firewall software, telling it to block the host.

3 Rules

3.1 Syntax

Snort has its own processing language used to define rules. Recently, with the
release of the v2 series of Snort, regular expression processing has been added to
make good rule-writing easier. However, the majority of the rules still rely heavily
on the traditional syntax.

The rule we talked about earlier, about catching all packets in web traffic contain-
ing ’cmd.exe’, would look something like this in Snort’s rule format:

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS 80 (msg:"WEB-IIS

cmd.exe access"; flags: A+; content:"cmd.exe"; nocase;

classtype:web-application-attack; sid:1002; rev:2;)

As this is a very basic rule, most of this is fairly straight-forward. The rule
tells Snort to generate an alert and log the packet, if the following condition is
met:
A packet is sent from $EXTERNAL NET (a variable set in the Snort configura-
tion containing a definition of the network outside our own) on any port using

3

TCP, to $HTTP SERVERS (again a configured variable) on port 80. The packet
has TCP ACK set and contains ’cmd.exe’, case insensitive.
If this is true, the packet is logged using the remaining specifications that we see
in the rule:
The title for the log entry is ”WEB-IIS cmd.exe access”, the class is ”web-application-
attack” and the sid (Snort rules ID) is 1002, revision 2.
The SID, along with the ”rev” identifier, is used to identify the triggered rule
easily.

Most of the default rules make use of more complex mechanisms, but the syntax
remains the same. More advanced options include checking raw binary data, using
offsets to check binary values in specific positions in packets, investigating TCP
checksums, and much more.

3.2 The art of choosing good rules

Snort is distributed with quite a large amount of rules, ranging from rules checking
for shellcode being transferred to a host on the network, to rules taking note of
stuff that isn’t necessarily harmless by itself but could be worth noting, like anony-
mous FTP access. The key thing here is of course to make sure one has relevant
rules. In some environments, internal FTP access might be highly suspicious and
consequently it’s a good idea to employ a rule for it, while in other environments
FTP access is something that happens all the time - a rule triggering on this will
just generate useless alerts that divert the attention from other potential attacks.

Also, it’s far from true that just because one has a rule checking for, say, shellcode
transfers, one will only get relevant alerts.
For instance, Snort has a default rule called ”SHELLCODE x86 setuid 0” that
simply triggers on the sequence of the hexadecimal values ”b017 cd80” in a packet.
In an environment where hosts on the network issue large file transfers on a regu-
lar basis, this rule will most likely trigger loads and loads of times - because in a
sufficiently large binary file, the mentioned sequence is bound to occur sooner or
later. We get a highly unwanted noise in the generated alerts. Simply removing
the rule isn’t a good solution either - a setuid 0 call being transferred over the
network is in itself highly suspicious, when it actually is a call. We learn from
this that the art of writing a good rule isn’t as easy as it might seem at first. The
person deciding what rules to use and/or write needs to think about what should
be considered normal traffic on his/her network, try to filter out as many false
positive cases as possible, and decide whether the hosts on the internal network
should be trusted not to do any mischief.

4

3.3 The importance of being up to date

It’s not enough to have Snort (or any other NIDS) in use on the network and leave
it at that when the installation is done. Like with any system, the administrator
needs to make sure that the NIDS and its rules are relevant and up to date. A
new exploit might spread quickly, and without corresponding rules Snort won’t
even notice it. Again, there are obvious similarities to antivirus software. Also
like in the antivirus software case, much effort has been put into inventing new
ways of evading the system, exploiting this fact that Snort (like AV software) can
only look for what it’s told to look for. This ’dumbness’ of Snort is a drawback.
Sourcefire, the company developing Snort, are constantly adding, deleting and
modifying rules. It’s possible to subscribe to updates to Snort rules - it’s free for
private use but costs quite some money for commercial use.

4 Conclusions

When deploying Snort, it’s important to make sure the used rules are relevant and
up to date, otherwise the system will be much less efficient - due to low signal-to-
noise ratio in the case of a bad choice of rules, and due to Snort missing attacks
completely in the case of a Snort system with rules not being updated properly.
Apart from the challenge of choosing/writing good rules for Snort, there is a
related disadvantage - since Snort only looks for things defined in its ruleset, it
doesn’t have the ability to tell what traffic is considered to be normal from each
host on the network, and what traffic seems to be out of place. This way, ’normal’
behaviour but from the ’wrong’ computer on the network isn’t noticed unless rules
are setup on a host-by-host basis. There are a few systems who have started to
deal with this problem, called ’anomaly based intrusion detection systems’, for
instance ASDIC2 which is developed in Uppsala.
However there are obvious advantages of using a NIDS, such as Snort, in a network.
Properly configured, it gives a good overview of what’s going on in the network,
and provides a way of automatically logging packets from potential attacks for
future reference. With some careful thinking, it can even be used for reacting
directly to attacks as they occur.

References

[1] Brian Caswell and Jeremy Hewlett. Snort Users Manual (available from
http://www.snort.org/docs/)

[2] Brian Caswell, Jay Beale, James C. Foster, Jeremy Faircloth. Snort 2.0
Intrusion Detection

2http://www.ping.se/eng/asdic.html

5

