Public–key cryptography

- Suggested by Diffie & Hellman 1976
- Instead of one secret, shared key (with the associated problems of key distribution):
 - Use a key pair \((e,d)\) for each user
 - one for encryption, one for decryption
 - one private (secret), one public
 - s.t. \(c = E_e(m)\), \(m = D_d(c)\)
 - in some cases \(E=D\) and
 \[
m = D_e(E_d(m)) = E_e(D_d(m)) = D_d(E_e(m))\]
 i.e. the keys \((e,d)\) are inverses of each other
Both confidentiality and authenticity

- A has \((e_A, d_A)\), B has \((e_B,d_B)\)
 - where \(e\) is private, \(d\) public
- Confidentiality \(A \rightarrow B: c = E_{dB}(m)\)
 - can only be decrypted by \(D_{eB}\)
- Authenticity \(A \rightarrow B: c = E_{eA}(m)\)
 - can be decrypted by anyone, but can only have been encrypted by \(E_{eA}\)
- Both conf\&auth \(A \rightarrow B: c = E_{dB}(E_{eA}(m))\)
 - decrypted by \(D_{dA}(D_{eB}(c))\)
Requirements on PKS

1. Easy to generate \((e,d)\)
2. Easy to encrypt \(E_k(m)\) given \(k\) and \(m\)
3. Easy to decrypt \(D_k(c)\) given \(k\) and \(c\)
4. Computationally infeasible to find \(e\) given \(d\)
5. Computationally infeasible to find \(m\) given \(e\) and \(c = E_e(m)\)
6. \(m = D_e(E_d(m)) = E_e(D_d(m)) = D_d(E_e(m))\)
 (not always)
One–way trapdoor functions

- A **one–way** function f is a $(1–1)$ function s.t.
 - $y = f(x)$ is easy to compute, but $x = f^{-1}(y)$ infeasible
- A **trapdoor** function f is a function s.t.
 - $x = f_k^{-1}(y)$ is easy iff k is known (the key)

- **Easy**: computable in polynomial time, proportional to n^a: n length of input, a constant
- **Infeasible**: not computable in polynomial time, e.g. only in 2^n
Examples of one–way trapdoors

- Breaking a leg
- Squeezing toothpaste out of a tube
- Mixing colours
- Multiplication of large prime numbers
 - factorization is hard
- Exponentiation of large numbers
 - discrete logarithms are hard
Exponential cryptography

- RSA: for $M=C=Z_n$
 - $c = m^e \mod n$
 - $m = c^d \mod n$
- Example: $e = 5, d = 77, n = 119, m = 19$
 - $c = 19^5 = 2476099 \mod 119 = 66$
 - $m = 66^{77} \approx 1.27 \cdot 10^{140} \mod 119 = 19$
- Seems impractical?
- How do we find (e,d) pairs s.t. it works?
Review: Modular arithmetic

- $a \equiv b \pmod{n}$ if $a - b = kn$ for some k
 - e.g. $17 \equiv 7 \pmod{5}$

- Write $a \mod{n} = r$
 if r is the (positive) residue of a/n
 - implies $a \equiv r \pmod{n}$

- Let \diamond be an operation: $+, - , \cdot$. Then
 $$ (a \diamond b) \mod{n} = ((a \mod{n}) \diamond (b \mod{n})) \mod{n} $$

- $(\mathbb{Z}_n,\{+,-,\cdot\})$ is a commutative ring:
 usual commutative, associative, distributive laws
Efficient exponentiation mod n

- $(a \cdot b) \mod n = ((a \mod n) \cdot (b \mod n)) \mod n$, so $a^b \mod n$ can be computed without generating astronomical numbers:
 - $3^5 \mod 7 = 243 \mod 7 = 5$
 $3^5 \mod 7 = (3^2)^2 \cdot 3 \mod 7$
 $= ((3^2 \mod 7) \cdot (3^2 \mod 7) \mod 7) \cdot 3 \mod 7$
 $= ((9 \mod 7) \cdot (9 \mod 7) \mod 7) \cdot 3 \mod 7$
 $= (2 \cdot 2 \mod 7) \cdot 3 \mod 7 = 12 \mod 7 = 5$
- Algorithm description in figure 6.7
Rivest, Shamir, Adleman

- RSA:
 - $c = m^e \mod n$
 - $m = c^d \mod n$
 - $m = (m^e \mod n)^d \mod n = m^{ed} \mod n \ (= m^{de} \mod n)$
- Find such $e, d, \text{ and } n$ using Euler’s theorem
Review: Modular arithmetic (cont)

\(x \) is the multiplicative inverse of \(a \) modulo \(n \), written \(a^{-1} \),
if \(ax \equiv 1 \pmod{n} \)

- Ex: \(3 \cdot 5 \equiv 1 \pmod{14} \)

The reduced set of residues modulo \(n \) is
\[
\mathbb{Z}_n^* = \{ x \in \mathbb{Z}_n - \{0\} : \gcd(x,n) = 1 \}
\]

Euler’s totient function \(\phi(n) \) is the cardinality of \(\mathbb{Z}_n^* \)

Ex: \(\mathbb{Z}_{24}^* = \{ 1, 5, 7, 11, 13, 17, 19, 23 \} \),
\(\phi(24) = 8 \)
Euler and primes

Lemma: If p and q are prime, then

\[\phi(pq) = (p-1) \cdot (q-1) = \phi(p) \cdot \phi(q) \]

Proof: in $\mathbb{Z}_{pq} = [0,pq-1]$, the numbers not relatively prime to pq are (in addition to 0):

- $q, 2q, \ldots, (p-1)q$
- $p, 2p, \ldots, (q-1)p$

so

\[\phi(pq) = pq - ((p-1)+(q-1)+1) = pq - p - q + 1 \]

\[= (p-1)(q-1) \]

Note: $\phi(p)=p-1$, for p a prime
Euler's theorem

Theorem: for all a and n s.t. $\gcd(a,n) = 1$ (they are relatively prime),
$$a^{\phi(n)} \mod n = 1$$

Corollary: for p and q primes, $n=pq$ and $0<m<n$,
$$m^{\phi(n)+1} = m^{(p-1)(q-1)+1} \equiv m \pmod{n}$$

If $ed \mod \phi(n) = 1$, then $ed = t\phi(n)+1$ for some t, so (e,d) is a working key pair (by the corollary).
Making RSA key pairs

\(ed \mod \phi(n) = 1, \text{ and if } \gcd(d,\phi(n)), \text{ Euler’s theorem then gives} \)

\[e = d^{\phi(n)-1} \mod \phi(n) \]

Computing \(e \) from \(d \) and \(\phi(n) \) is easy, and even more efficient with an extension of Euclid’s algorithm for \(\gcd(d,\phi(n)) \) (see section 7.5)

Having \(\phi(n) \) makes RSA easy to break;

\(\phi(n)=(p-1)(q-1) \), so \(p \) and \(q \) must be secret, while \(n=pq \) must be public.

Factorizing products of large (prime) numbers is hard!
Factorization

- Factorization of $n=pq$ (to find $\phi(n)$) is difficult if p and q are large
 - August 1999: 155–digit (512–bit) n factorized
 - 35.7 CPU–years (7.4 months) using 160 workstations, 120 PII, 12 strong workstations, and one Cray
 - February 1999: 140–digit n factorized
 - 8.9 CPU–years (9 weeks) using 125 workstations, 60 Pcs, and one Cray
 - 1024–bit n expected to be 40 million times harder than 140–bit
Finding large primes

- Naïve methods too time–consuming
- Guess a number and test it many times
 - gives high probability of primeness
 - more likely that a bit is flipped by cosmic radiation
 - for 200 digits, approx 70 guesses each tested 100 times is enough
- Desired properties to make factorization harder
 - \(p, q\) of different length
 - \((p-1)\) and \((q-1)\) with large prime factors
 - \(\gcd(p-1,q-1)\) small
RSA cryptanalysis

- Brute force not feasible with large keys (typically 1024–2048 bits)
- Factorization difficult, but mathematical advances may make it significantly easier
 - 1977 challenge: 428–bit n would take 40 quadrillion years – took 8 months (1994)
- Timing attack
 - based on the time to decrypt (ciphertext–only attack)
 - countermeasures: random delay, "blinding"
Simple RSA key exchange

- A sends public key d_A and id_A to B
- B selects a random session key k_S
- B sends $c = E_{dA}(k_S)$ to A
- A decrypts $k_S = D_{eA}(c)$

Vulnerable to man–in–the–middle attack
 - both confidentiality and authenticity needed
Blind use of RSA is insecure

- When used for short messages (e.g. 128–bit keys), RSA is very vulnerable
 - for $M \in \mathbb{Z}_m$, takes $O(2^{m/2})$ time and $O(m \cdot 2^{m/2})$ space
 - idea: $c/M_2^e \equiv M_1^e \pmod{n}$, if $M=M_1M_2$
 - build table of $M_1^e \pmod{n}$ for all possible M_1 and check for $c/M_2^e \pmod{n}$. Takes $2^{m_1} \cdot 2^{m_2}$ operations ($M_1<2^{m_1}, M_2<2^{m_2}$)

- Blinding necessary!
 - create secret random $r<n$
 - $c = m^{re} \pmod{n}$
 - $m = c^d \cdot r^{-1}$ where r^{-1} is the inverse of r
Generators and discrete logarithms

- a is a \textit{primitive root} (or \textit{generator}) modulo p if Z_p^* is generated by exponentiation of a mod p

 - ex: 2 is a primitive root mod 11:
 \[
 Z_{11}^* = \{ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 \} \\
 = \{ 2^{10}, 2^1, 2^8, 2^2, 2^4, 2^9, 2^7, 2^3, 2^6, 2^5 \} \text{ mod } 11
 \]

- For any b, and a a generator mod p, a unique i exists s.t. $b = a^i$ mod p.

- i is the \textit{discrete logarithm} (index) of b for base a, mod p

 write $i = \text{ind}_{a,p}(b)$
Diffie–Hellman key exchange

- Public: prime q, generator a modulo q.
- User A selects private, random $x_A < q$, and computes $y_A = a^{x_A} \mod q$
- User B selects and computes x_B and y_B same way
- Each sends his y value to the other, and computes the shared key:

$$K = (y_B)^{x_A} \mod q = (a^{x_B} \mod q)^{x_A} \mod q$$
$$= (a^{x_B \cdot x_A}) \mod q = (a^{x_A \cdot x_B}) \mod q = (a^{x_A} \mod q)^{x_B} \mod q$$
$$= (y_A)^{x_B} \mod q = K$$
Diffie–Hellman cryptanalysis

- Known: q, a, y_A, y_B
- To get k, need x_A or x_B
 \[x_A = \text{ind}_{a,q}(y_B) \]
- For q a large prime, this is computationally infeasible
ElGamal PKS

• Like Diffie–Hellman, but after exchanging y values, a message $m < q$ can be encrypted:
 - select random k in $[1, q-1]$
 - compute $K = y_B^k \mod q$
 - send (C_1, C_2) where
 • $C_1 = a^k \mod q$
 • $C_2 = Km \mod q$

 – decryption:
 • $K = C_1^{xB} \mod q$
 • $m = C_2K^{-1} \mod q$