(t,w) Threshold schemes

- A master key K (e.g. for a Certificate Authority) is very very sensitive to exposure or loss
 - exposure makes the whole system untrustable
 - loss makes system inaccessible
 - extra copies increases vulnerability
- Solution: split K into w shadows $K_1,...,K_w$ s.t.
 - with t shadows, K can be recovered
 - with fewer than t, K can not be recovered
- Give the w shadows to different users
 - exposure of fewer than t shadows OK
 - loss of fewer than $w-t$ shadows OK
Shamir threshold scheme

- Use a random, secret, polynomial of degree \(t-1 \)

 \[h(x) = (a_{t-1}x^{t-1} + \cdots + a_1x + a_0) \mod p \]

 - where \(a_0 = K, \ p > K, \ p > w, \ p \ \text{prime} \)

- \(K = h(0) \)

 \[K_i = h(x_i) \text{ for } i \in [1, w], \ x_i \text{ distinct and not secret} \]

- Each pair \((x_i, K_i)\) is a point on the curve \(h(x) \)

 - \(t \) points uniquely determine a polynomial of degree \(t-1 \)

 - \(h(x) \) and thus \(K \) can be reconstructed by \(t \) shadows but not fewer
Shamir thresholds (cont)

• Given t shadows $K_{i_1},..., K_{i_t}$, $h(x)$ is reconstructed
 e.g. by the Lagrange polynomial

 $$ h(x) = \sum_{s=1}^{t} K_{i_s} \prod_{j=1, j\neq s}^{t} \frac{(x-x_{i_j})}{(x_{i_s}-x_{i_j})} \mod p $$

• Since arithmetic is in \mathbb{Z}_p, division is by inverses
 mod p and multiplication.

• Features:

 – More shadows: compute $h(x)$ for a new x
 – Retract shadows: use a new polynomial with same K
 – Users may have more than one shadow (president)

• Other threshold schemes exist.
Oblivious transfer

• A and B want to flip a coin by computer:
 – A picks two large primes p,q and sends $n=pq$ to B
 – B picks a random $x<n$ s.t. $\gcd(x,n)=1$, and sends $a=x^2\mod n$ to A
 – A computes (by Chinese Remainder Remainder Theorem) four roots of a and sends one randomly chosen to B
 • these are x, $n-x$, y, $y-n$, but A does not know x
 – If B receives y or $y-n$ he can find p and q by computing $\gcd(x+y,n)=p$ or q. Otherwise he cannot.
 – B wins if he can factor n.

• Can be used in contract signing protocols.