Asymmetric crypto

continued

Simple RSA key exchange

- A sends public key d_{A} and i_{A} to B
- B selects a random session key ks_{s}
- B sends $c=E_{d A}\left(k_{s}\right)$ to A
- A decrypts $D_{e A}(c)=k_{s}$, which is used for session (symmetric)

Vulnerable to man-in-the-middle attack - need both confidentiality and authenticity

Naïve uses of RSA

A. Using too short messages makes it easy to find private key
B. Using small private key (for speed) makes it easy to find it
C. Having e, d and n gives you p and q

A. Short m in RSA

Key: $c=\left(m_{1} \times m_{2}\right)^{e}=m_{1}^{e} \times m_{2}^{e}=c_{1} \times c_{2}(\bmod n)$ If $m<2^{k}$ then probably $m_{1}, m_{2}<2^{k / 2}$
($k=40 . .64 \Rightarrow p=18-50 \%$)

1. Build sorted table $\left\{1^{e}, \ldots,\left(2^{k / 2}\right)^{e}\right\}(\bmod n)$
2. Find i, j s.t. $c / i^{e}=j^{e}(\bmod n)$ for $i, j=1 . .2^{k / 2}$; then $m=i \times j$

Uses space $2^{k / 2} \log n$ bits, time $<O\left(2^{k}\right)$ For 56-bit DES keys and 1 K -bit n: space 32 Gbyte, 2^{29} mod ops $\ll 2^{56}$ brute f. Fix: padding (complex, randomized).

B. Small private keys

- A small key makes exponentiation faster (75\% or so)
- If $3 e<n^{1 / 4}$ and $q<p<2 q$, then e can be found efficiently (through $\phi(\mathrm{n})$) [Wiener, book pp207]
- E.g, for 1024 -bit n, use 256-bit e!
- Possibly worse (also e < sqrt(n))

C. Getting p and q

- If e, d and n are known, we can find p and q efficiently using randomized algorithm [book §5.7.2]
- I.e., if secret key lost, must change also n!

Different breaks

- Total break: adversary gets private key (for asymmetric) or secret key (for symm.)
- Partial break: adversary decrypts ciphertext (or gets info about plaintext) with nonnegligible probability
- Distinguishability of plaintexts: with probability $>1 / 2$ the adversary can distinguish the encryptions of two given plaintexts (or encryption from random junk)

Generators and discrete

logarithms

- a is a primitive root (or generator) modulo p if $Z_{p}{ }^{*}$ is generated by exponentiation of a $\bmod p$
- ex: 2 is a primitive root mod 11

$$
Z_{11}{ }^{*}=\{1 . .10\}=\left\{2^{10}, 2^{1}, 2^{8}, 2^{2}, 2^{4}, 2^{9}, 2^{7}, 2^{3}, 2^{6}, 2^{5}\right\}
$$

- For any b, and a a generator mod p, a unique i exists s.t. $b=a^{i} \bmod p$
- i is the discrete logarithm (index) of b for base $a, \bmod p: i=$ ind $_{a, p}(b)$

Diffie-Hellman key

agreement algorithm

- Public: prime q, generator a mod q
- User A selects private random $X_{A}<q$, computes $y_{A}=a^{\times A} \bmod q$
- User B selects x_{B} and computes y_{B} same way
- Each sends her y to the other, computes shared $k=\left(y_{B}\right)^{\times A} \bmod q=\left(a^{\times B} \bmod q\right)^{\times A} \bmod q$
$=a^{\times B \cdot x A} \bmod q=\left(a^{\times A}\right)^{\times B} \bmod q=\left(y_{A}\right)^{\times B} \bmod q$

Diffie-Hellman cryptanalysis

- Known: q, a, y_{A}, y_{B}
- To get $k_{\text {, need }} X_{A}$ or X_{B} $x_{A}=\operatorname{ind}_{a, q}\left(y_{B}\right)$
- For q a large prime (> 300 digits), this is computationally infeasible

ElGamal Public-Key

- Like Diffie-Hellman but after exchanging y values, a message $m<q$ can be encrypted:

1. select random $k<q$, compute $K=y_{B}{ }^{k} \bmod q$
2. send (c_{1}, c_{2}) where
$c_{1}=a^{k} \bmod q$
$c_{2}=K \cdot m \bmod q$
3. decryption:

$$
\begin{aligned}
& \mathrm{K}=\mathrm{c}_{1} \times B \bmod \mathrm{q} \\
& \mathrm{~m}=\mathrm{c}_{2} \cdot \mathrm{~K}^{-1} \bmod \mathrm{q}
\end{aligned}
$$

