
Asymmetric crypto
continued



Simple RSA key 
exchange

A sends public key dA and idA to B

B selects a random session key kS

B sends c = EdA(kS) to A

A decrypts DeA(c) = kS, which is used for 
session (symmetric)

Vulnerable to man-in-the-middle attack - need 
both confidentiality and authenticity



Naïve uses of RSA

A.Using too short messages makes it easy to 
find private key

B.Using small private key (for speed) makes it 
easy to find it

C.Having e, d and n gives you p and q



A. Short m in RSA
Key: c = (m1 x m2)e = m1e x m2e = c1 x c2 (mod n)
If m < 2k then probably m1, m2 < 2k/2 
(k=40..64 => p=18-50%)

1. Build sorted table { 1e, ..., (2k/2)e } (mod n)

2.Find i, j s.t. c/ie = je (mod n) for i,j=1..2k/2; 
then m = i x j

Uses space 2k/2 log n bits, time < O(2k)
For 56-bit DES keys and 1K-bit n: 
space 32Gbyte, 229 mod ops << 256 brute f. 
Fix: padding (complex, randomized).



B. Small private keys

A small key makes exponentiation faster 
(75% or so)

If 3e < n1/4 and q < p < 2q,
then e can be found efficiently 
(through ϕ(n)) [Wiener, book pp207]

E.g, for 1024-bit n, use 256-bit e!

Possibly worse (also e < sqrt(n))



C. Getting p and q

If e, d and n are known, we can find p and q 
efficiently using randomized algorithm [book 
§5.7.2]

I.e., if secret key lost, must change also n!



Different breaks

Total break: adversary gets private key (for 
asymmetric) or secret key (for symm.)

Partial break: adversary decrypts ciphertext 
(or gets info about plaintext) with non-
negligible probability

Distinguishability of plaintexts: with 
probability > 1/2 the adversary can 
distinguish the encryptions of two given 
plaintexts (or encryption from random junk)



Generators and discrete 
logarithms

a is a primitive root (or generator) modulo p 
if Zp* is generated by exponentiation of a 
mod p

ex: 2 is a primitive root mod 11
Z11* = { 1..10 } = {210,21,28,22,24,29,27,23,26,25}

For any b, and a a generator mod p, a unique 
i exists s.t. b=ai mod p

i is the discrete logarithm (index) of b for 
base a, mod p: i=inda,p(b)



Diffie-Hellman key 
agreement algorithm
Public: prime q, generator a mod q

User A selects private random xA < q, 
computes yA = axA mod q

User B selects xB and computes yB same way

Each sends her y to the other, computes 
shared k = (yB)xA mod q = (axB mod q)xA mod q
= axB·xA mod q = (axA)xB mod q = (yA)xB mod q



Diffie-Hellman 
cryptanalysis

Known: q, a, yA, yB

To get k, need xA or xB

xA = inda,q(yB)

For q a large prime (> 300 digits), this is 
computationally infeasible



ElGamal Public-Key

Like Diffie-Hellman but after exchanging y 
values, a message m < q can be encrypted:
1. select random k < q, 

compute K = yBk mod q
2.send (c1, c2) where

c1 = ak mod q
c2 = K·m mod q

3.decryption:
K = c1xB mod q
m = c2·K-1 mod q


