Asymmetric crypto

continued

Simple RSA key exchange

- A sends public key dA and idA to B
- B selects a random session key ks
- \odot B sends $c = E_{dA}(k_s)$ to A
- \odot A decrypts $D_{eA}(c) = k_s$, which is used for session (symmetric)

Vulnerable to man-in-the-middle attack - need both confidentiality and authenticity

Naive uses of RSA

- A. Using too short messages makes it easy to find private key
- B. Using small private key (for speed) makes it easy to find it
- C. Having e, d and n gives you p and q

A. Short m in RSA

```
Key: c = (m_1 \times m_2)^e = m_1^e \times m_2^e = c_1 \times c_2 \pmod{n}

If m < 2^k then probably m_1, m_2 < 2^{k/2}

(k=40..64 \Rightarrow p=18-50\%)
```

- 1. Build sorted table $\{1^e, ..., (2^{k/2})^e\}$ (mod n)
- 2. Find i, j s.t. $c/i^e = j^e \pmod{n}$ for i, j=1.. $2^{k/2}$; then $m = i \times j$

Uses space $2^{k/2} \log n$ bits, time $< O(2^k)$ For 56-bit DES keys and 1K-bit n: space 32Gbyte, $2^{29} \mod ops << 2^{56}$ brute f. Fix: padding (complex, randomized).

B. Small private keys

- A small key makes exponentiation faster (75% or so)
- If $3e < n^{1/4}$ and q ,then e can be found efficiently $(through <math>\phi(n)$) [Wiener, book pp207]
- E.g, for 1024-bit n, use 256-bit e!
- Possibly worse (also e < sqrt(n))</p>

C. Getting p and q

- If e, d and n are known, we can find p and q efficiently using randomized algorithm [book §5.7.2]
- I.e., if secret key lost, must change also n!

Different breaks

- Total break: adversary gets private key (for asymmetric) or secret key (for symm.)
- Partial break: adversary decrypts ciphertext (or gets info about plaintext) with nonnegligible probability
- Distinguishability of plaintexts: with probability > 1/2 the adversary can distinguish the encryptions of two given plaintexts (or encryption from random junk)

Generators and discrete logarithms

- a is a primitive root (or generator) modulo p if Z_p* is generated by exponentiation of a mod p
 - ex: 2 is a primitive root mod 11 $Z_{11}^* = \{ 1..10 \} = \{ 2^{10}, 2^1, 2^8, 2^2, 2^4, 2^9, 2^7, 2^3, 2^6, 2^5 \}$
- For any b, and a a generator mod p, a unique i exists s.t. b=aⁱ mod p
- i is the discrete logarithm (index) of b for base a, mod p: i=ind_{a,p}(b)

Diffie-Hellman key agreement algorithm

- Public: prime q, generator a mod q
- User A selects private random $x_A < q$,
 computes $y_A = a^{xA} \mod q$
- User B selects XB and computes YB same way
- Each sends her y to the other, computes shared $k = (y_B)^{xA} \mod q = (a^{xB} \mod q)^{xA} \mod q$ = $a^{xB \cdot xA} \mod q = (a^{xA})^{xB} \mod q = (y_A)^{xB} \mod q$

Diffie-Hellman cryptanalysis

- Known: q, a, yA, yB
- To get k, need x_A or x_B $x_A = ind_{a,q}(y_B)$
- For q a large prime (> 300 digits), this is computationally infeasible

ElGamal Public-Key

- Like Diffie-Hellman but after exchanging y values, a message m < q can be encrypted:</p>
 - 1. select random k < q, compute $K = y_B^k \mod q$
 - 2. send (c_1, c_2) where

 $c_1 = a^k \mod q$

 $c_2 = K \cdot m \mod q$

3. decryption:

 $K = c_1^{\times B} \mod q$

 $m = c_2 \cdot K^{-1} \mod q$