Public-key cryptography

- Suggested by Diffie & Hellman 1976
- Instead of one secret, shared key (with the associated problems of key distribution):
- Use a key pair (e,d) for each user
 - one for encryption, one for decryption
 - one private (secret), one public
 - s.t. $c = E_e(m), m = D_d(c)$
 - in some cases E=D and

$$m = D_e(E_d(m)) = E_e(D_d(m)) = D_d(E_e(m))$$

i.e. the keys (e,d) are inverses of each other

Both confidentiality and authenticity

- A has (e_A,d_A) , B has (e_B,d_B)
 - where *e* is private, *d* public
- Confidentiality A \rightarrow B: $c = E_{dB}(m)$
 - can only be decrypted by D_{eB}
- Authenticity A \rightarrow B: $c = E_{eA}(m)$
 - can be decrypted by anyone, but can only have been encrypted by $E_{_{\varrho A}}$
- Both conf&auth A \rightarrow B: $c = E_{dB}(E_{eA}(m))$
 - decrypted by $D_{dA}(D_{eB}(c))$

Requirements on PKS

- 1. Easy to generate (e,d)
- 2. Easy to encrypt $E_k(m)$ given k and m
- 3. Easy to decrypt $D_k(c)$ given k and c
- 4. Computationally infeasible to find *e* given *d*
- 5. Computationally infeasible to find m given e and $c = E_{\rho}(m)$

6.
$$m = D_e(E_d(m)) = E_e(D_d(m)) = D_d(E_e(m))$$
(not always)

One-way trapdoor functions

- A *one-way* function f is a (1-1) function s.t.
 - -y = f(x) is easy to compute, but $x = f^{-1}(y)$ infeasible
- A *trapdoor* function f is a function s.t.
 - $-x = f_k^{-1}(y)$ is easy <u>iff</u> k is known (the key)
- *Easy*: computable in polynomial time, proportional to n^a : n length of input, a constant
- *Infeasible*: not computable in polynomial time, e.g. only in 2^n

Examples of one-way trapdoors

- Breaking a leg
- Squeezing toothpaste out of a tube
- Mixing colours
- Multiplication of large prime numbers
 - factorization is hard
- Exponentiation of large numbers
 - discrete logarithms are hard

Exponential cryptography

- RSA: for $M=C=Z_n$
 - $-c = m^e \mod n$
 - $-m = c^d \mod n$
- Example: e = 5, d = 77, n = 119, m = 19
 - $-c = 19^5 = 2476099 \mod 119 = 66$
 - $-m = 66^{77} \approx 1.27 \cdot 10^{140} \mod 119 = 19$
- Seems impractical?
- How do we find (*e*,*d*) pairs s.t. it works?

Review: Modular arithmetic

- $a \equiv b \pmod{n}$ if a-b = kn for some k
 - $e.g. 17 \equiv 7 \pmod{5}$
- Write $a \mod n = r$ if r is the (positive) residue of a/n
 - implies $a \equiv r \pmod{n}$
- Let \Diamond be an operation: +, -, ·. Then $(a \Diamond b) \bmod n = ((a \bmod n) \Diamond (b \bmod n)) \bmod n$
- $(\mathbf{Z}_n, \{+, -, \cdot\})$ is a commutative ring: usual commutative, associative, distributive laws

Efficient exponentiation mod n

- $(a \cdot b) \mod n = ((a \mod n) \cdot (b \mod n)) \mod n$, so $a^b \mod n$ can be computed without generating astronomical numbers:
 - $-3^{5} \mod 7 = 243 \mod 7 = 5$ $3^{5} \mod 7 = (3^{2})^{2} \cdot 3 \mod 7$ $= ((3^{2} \mod 7) \cdot (3^{2} \mod 7) \mod 7) \cdot 3 \mod 7$ $= ((9 \mod 7) \cdot (9 \mod 7) \mod 7) \cdot 3 \mod 7$ $= (2 \cdot 2 \mod 7) \cdot 3 \mod 7 = 12 \mod 7 = 5$
- Algorithm description in figure 6.7

Rivest, Shamir, Adleman

• RSA:

- $-c = m^e \mod n$
- $-m = c^d \mod n$
- $-m = (m^e \bmod n)^d \bmod n = m^{ed} \bmod n \ (= m^{de} \bmod n)$
- Find such *e*,*d*, and *n* using Euler's theorem

Review: Modular arithmetic (cont)

```
x is the multiplicative inverse of a modulo n, written a^{-1}, if ax \equiv 1 \pmod{n}

- Ex: 3 \cdot 5 \equiv 1 \pmod{14}
```

The reduced set of residues modulo n is

$$Z_n^* = \{ x \in Z_n - \{0\} : \gcd(x,n) = 1 \}$$

Euler's totient function $\phi(n)$ is the cardinality of \mathbf{Z}_{n}^{*}

Ex:
$$\mathbf{Z}^*_{24} = \{1, 5, 7, 11, 13, 17, 19, 23\},\$$

 $\phi(24) = 8$

Euler and primes

Lemma: If p and q are prime, then

$$\phi(pq) = (p-1)\cdot(q-1) = \phi(p)\cdot\phi(q)$$

Proof: in $Z_{pq} = [0,pq-1]$, the numbers <u>not</u> relatively prime to pq are (in addition to 0):

$$-q, 2q, ..., (p-1)q$$

$$-p, 2p, ..., (q-1)p$$

so
$$\phi(pq) = pq - ((p-1)+(q-1)+1) = pq - p - q + 1$$

= $(p-1)(q-1)$

Note: $\phi(p)=p-1$, for p a prime

Euler's theorem

Theorem: for all a and n s.t. gcd(a,n) = 1 (they are relatively prime), $a^{\phi(n)} \mod n = 1$

Corollary: for p and q primes, n=pq and 0 < m < n, $m^{\phi(n)+1} = m^{(p-1)(q-1)+1} \equiv m \pmod{n}$

If $ed \mod \phi(n) = 1$, then $ed = t\phi(n) + 1$ for some t, so (e,d) is a working key pair (by the corollary).

Making RSA key pairs

- $ed \mod \phi(n) = 1$, and if $\gcd(d,\phi(n))$, Euler's theorem then gives $e = d^{\phi(\phi(n))-1} \mod \phi(n)$
- Computing e from d and $\phi(n)$ is easy, and even more efficient with an extension of Euclid's algorithm for $gcd(d,\phi(n))$ (see section 7.5)
- Having $\phi(n)$ makes RSA easy to break; $\phi(n)=(p-1)(q-1)$, so p and q must be secret, while n=pq must be public.
- Factorizing products of large (prime) numbers is hard!

Factorization

- Factorization of n=pq (to find $\phi(n)$) is difficult if p and q are large
 - August 1999: 155-digit (512-bit) *n* factorized
 - 35.7 CPU-years (7.4 months) using 160 workstations, 120 PII, 12 strong workstations, and one Cray
 - February 1999: 140-digit *n* factorized
 - 8.9 CPU-years (9 weeks) using 125 workstations, 60 Pcs, and one Cray
 - 1024-bit *n* expected to be 40 million times harder than 140-bit

Finding large primes

- Naive methods too time-consuming
- Guess a number and test it many times
 - gives high probability of primeness
 - more likely that a bit is flipped by cosmic radiation
 - for 200 digits, approx 70 guesses each tested 100 times is enough
- Desired properties to make factorization harder
 - p, q of different length
 - -(p-1) and (q-1) with large prime factors
 - $-\gcd(p-1,q-1)$ small

RSA cryptanalysis

- Brute force not feasible with large keys (typically 1024–2048 bits)
- Factorization difficult, but mathematical advances may make it significantly easier
 - 1977 challenge: 428-bit n would take 40 quadrillion years took 8 months (1994)
- Timing attack
 - based on the time to decrypt (ciphertext-only attack)
 - countermeasures: random delay, "blinding"

Simple RSA key exchange

- A sends public key d_A and id_A to B
- B selects a random session key k_s
- B sends $c = E_{dA}(k_S)$ to A
- A decrypts $k_S = D_{eA}(c)$

Vulnerable to man-in-the-middle attack

Generators and discrete logarithms

- a is a primitive root (or generator) modulo p if \mathbf{Z}_{p}^{*} is generated by exponentiation of a mod p
 - ex: 2 is a primitive root mod 11: $\mathbf{Z}_{11}^* = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$ = $\{2^{10}, 2^1, 2^8, 2^2, 2^4, 2^9, 2^7, 2^3, 2^6, 2^5\} \mod 11$
- For any b, and a a generator mod p, a unique i exists s.t. $b=a^i \mod p$.
- *i* is the *discrete logarithm* (index) of *b* for base *a*, mod *p*

write
$$i = \operatorname{ind}_{a,p}(b)$$

Diffie-Hellman key exchange

- Public: prime q, generator a modulo q.
- User A selects private, random $x_A < q$, and computes $y_A = a^{xA} \mod q$
- User B selects and computes x_B and y_B same way
- Each sends his y value to the other, and computes the shared key:
 - $-K = (y_B)^{xA} \mod q = (a^{xB} \mod q)^{xA} \mod q$ $= (a^{xB \cdot xA}) \mod q = (a^{xA \cdot xB}) \mod q = (a^{xA} \mod q)^{xB} \mod q$ $= (y_A)^{xB} \mod q = K$

Diffie-Hellman cryptanalysis

- Known: q, a, y_A , y_B
- To get k, need x_A or x_B $x_A = \operatorname{ind}_{a,q}(y_B)$
- For q a large prime, this is computationally infeasible

EIGamal PKS

- Like Diffie-Hellman, but after exchanging y values, a message m < q can be encrypted:
 - select random k in [1,q-1]
 - compute $K = y_B^k \mod q$
 - send (C_1,C_2) where
 - $C_1 = a^k \mod q$
 - $C_2 = Km \mod q$
 - decryption:
 - $K = C_1^{xB} \mod q$
 - $m = C_2 K^{-1} \mod q$