Public-key cryptography

- Suggested by Diffie \& Hellman 1976
- Instead of one secret, shared key (with the associated problems of key distribution):
- Use a key pair (e, d) for each user
- one for encryption, one for decryption
- one private (secret), one public
- s.t. $c=E_{e}(m), m=D_{d}(c)$
- in some cases $E=D$ and

$$
m=D_{e}\left(E_{d}(m)\right)=E_{e}\left(D_{d}(m)\right)=D_{d}\left(E_{e}(m)\right)
$$

i.e. the keys (e, d) are inverses of each other

Both confidentiality and authenticity

- A has $\left(e_{A}, d_{A}\right)$, B has $\left(e_{B}, d_{B}\right)$
- where e is private, d public
- Confidentiality $\mathrm{A} \rightarrow \mathrm{B}: c=E_{d B}(m)$
- can only be decrypted by $D_{e B}$
- Authenticity $\mathrm{A} \rightarrow \mathrm{B}: c=E_{e A}(m)$
- can be decrypted by anyone, but can only have been encrypted by $E_{e A}$
- Both conf\&auth $\mathrm{A} \rightarrow \mathrm{B}: c=E_{d B}\left(E_{e A}(m)\right)$
- decrypted by $D_{d A}\left(D_{e B}(c)\right)$

Requirements on PKS

1. Easy to generate (e, d)
2. Easy to encrypt $E_{k}(m)$ given k and m
3. Easy to decrypt $D_{k}(c)$ given k and c
4. Computationally infeasible to find e given d
5. Computationally infeasible to find m given e and $c=E_{e}(m)$
6. $m=D_{e}\left(E_{d}(m)\right)=E_{e}\left(D_{d}(m)\right)=D_{d}\left(E_{e}(m)\right)$
(not always)

One-way trapdoor functions

- A one-way function f is a (1-1) function s.t.
- $y=f(x)$ is easy to compute, but $x=f^{-1}(y)$ infeasible
- A trapdoor function f is a function s.t.
- $x=f_{k}^{-1}(y)$ is easy $\underline{\text { iff }} k$ is known (the key)
- Easy: computable in polynomial time, proportional to $n^{a}: n$ length of input, a constant
- Infeasible: not computable in polynomial time, e.g. only in 2^{n}

Examples of one-way trapdoors

- Breaking a leg
- Squeezing toothpaste out of a tube
- Mixing colours
- Multiplication of large prime numbers
- factorization is hard
- Exponentiation of large numbers
- discrete logarithms are hard

Exponential cryptography

- RSA: for $\boldsymbol{M}=\boldsymbol{C}=\boldsymbol{Z}_{n}$
$-c=m^{e} \bmod n$
$-m=c^{d} \bmod n$
- Example: $e=5, d=77, n=119, m=19$
$-c=19^{5}=2476099 \bmod 119=66$
$-m=66^{77} \approx 1.27 \cdot 10^{140} \bmod 119=19$
- Seems impractical?
- How do we find (e, d) pairs s.t. it works?

Review: Modular arithmetic

- $a \equiv b(\bmod n)$ if $a-b=k n$ for some k
- e.g. $17 \equiv 7(\bmod 5)$
- Write $a \bmod n=r$ if r is the (positive) residue of a / n
- implies $a \equiv r(\bmod n)$
- Let Δ be an operation:,,$+- \cdot$ Then
$(a \diamond b) \bmod n=((a \bmod n) \diamond(b \bmod n)) \bmod n$
- $\left(Z_{n},\{+,-, \cdot\}\right)$ is a commutative ring: usual commutative, associative, distributive laws

Efficient exponentiation mod n

- $(a \cdot b) \bmod n=((a \bmod n) \cdot(b \bmod n)) \bmod n$, so $a^{b} \bmod n$ can be computed without generating astronomical numbers:

$$
\begin{aligned}
& -3^{5} \bmod 7=243 \bmod 7=5 \\
& 3^{5} \bmod 7=\left(3^{2}\right)^{2} \cdot 3 \bmod 7 \\
& =\left(\left(3^{2} \bmod 7\right) \cdot\left(3^{2} \bmod 7\right) \bmod 7\right) \cdot 3 \bmod 7 \\
& =((9 \bmod 7) \cdot(9 \bmod 7) \bmod 7) \cdot 3 \bmod 7 \\
& =(2 \cdot 2 \bmod 7) \cdot 3 \bmod 7=12 \bmod 7=5
\end{aligned}
$$

- Algorithm description in figure 6.7

Rivest, Shamir, Adleman

- RSA:
$-c=m^{e} \bmod n$
$-m=c^{d} \bmod n$
$-m=\left(m^{e} \bmod n\right)^{d} \bmod n=m^{e d} \bmod n\left(=m^{d e} \bmod n\right)$
- Find such e, d, and n using Euler's theorem

Review: Modular arithmetic (cont)

x is the multiplicative inverse of a modulo n, written a^{-1}, if $a x \equiv 1(\bmod n)$
$-\operatorname{Ex}: 3 \cdot 5 \equiv 1(\bmod 14)$
The reduced set of residues modulo n is

$$
Z_{n}^{*}=\left\{\mathrm{x} \in Z_{n}-\{0\}: \operatorname{gcd}(x, n)=1\right\}
$$

Euler's totient function $\phi(n)$ is the cardinality of \boldsymbol{Z}_{n}^{*}
$\mathrm{Ex}: \boldsymbol{Z}_{24}^{*}=\{1,5,7,11,13,17,19,23\}$, $\phi(24)=8$

Euler and primes

Lemma: If p and q are prime, then

$$
\phi(p q)=(p-1) \cdot(q-1)=\phi(p) \cdot \phi(q)
$$

Proof: in $\boldsymbol{Z}_{p q}=[0, p q-1]$, the numbers not relatively prime to $p q$ are (in addition to 0):
$-q, 2 q, \ldots,(p-1) q$
$-p, 2 p, \ldots,(q-1) p$

$$
\begin{aligned}
& \text { so } \phi(p q)=p q-((p-1)+(q-1)+1)=p q-p-q+1 \\
& \quad=(p-1)(q-1)
\end{aligned}
$$

Note: $\phi(p)=p-1$, for p a prime

Euler's theorem

Theorem: for all a and n s.t. $\operatorname{gcd}(a, n)=1$ (they are relatively prime),
$a^{\phi(n)} \bmod n=1$
Corollary: for p and q primes, $n=p q$ and $0<m<n$,

$$
m^{\phi(n)+1}=m^{(p-1)(q-1)+1} \equiv m(\bmod n)
$$

If $e d \bmod \phi(n)=1$, then $e d=t \phi(n)+1$ for some t, so (e, d) is a working key pair (by the corollary).

Making RSA key pairs

$e d \bmod \phi(n)=1$, and if $\operatorname{gcd}(d, \phi(n))$, Euler's theorem then gives
$e=d^{\phi \phi(n)-1} \bmod \phi(n)$
Computing e from d and $\phi(n)$ is easy, and even more efficient with an extension of Euclid's algorithm for $\operatorname{gcd}(d, \phi(n))$ (see section 7.5)

Having $\phi(n)$ makes RSA easy to break; $\phi(n)=(p-1)(q-1)$, so p and q must be secret, while $n=p q$ must be public.
Factorizing products of large (prime) numbers is hard!

Factorization

- Factorization of $n=p q$ (to find $\phi(n)$) is difficult if p and q are large
- August 1999: 155-digit (512-bit) n factorized
- 35.7 CPU-years (7.4 months) using 160 workstations, 120 PII, 12 strong workstations, and one Cray
- February 1999: 140-digit n factorized
- 8.9 CPU-years (9 weeks) using 125 workstations, 60 Pcs, and one Cray
- 1024-bit n expected to be 40 million times harder than 140-bit

Finding large primes

- Naive methods too time-consuming
- Guess a number and test it many times
- gives high probability of primeness
- more likely that a bit is flipped by cosmic radiation
- for 200 digits, approx 70 guesses each tested 100 times is enough
- Desired properties to make factorization harder
- p, q of different length
- $(p-1)$ and $(q-1)$ with large prime factors
$-\operatorname{gcd}(p-1, q-1)$ small

RSA cryptanalysis

- Brute force not feasible with large keys (typically 1024-2048 bits)
- Factorization difficult, but mathematical advances may make it significantly easier
- 1977 challenge: 428-bit n would take 40 quadrillion years - took 8 months (1994)
- Timing attack
- based on the time to decrypt (ciphertext-only attack)
- countermeasures: random delay, "blinding"

Simple RSA key exchange

- A sends public key d_{A} and $i d_{A}$ to B
- B selects a random session key k_{S}
- B sends $c=E_{d A}\left(k_{s}\right)$ to A
- A decrypts $k_{S}=D_{e A}(c)$

Vulnerable to man-in-the-middle attack

Generators and discrete logarithms

- a is a primitive root (or generator) modulo p if $Z_{p}{ }^{*}$ is generated by exponentiation of $a \bmod p$
- ex: 2 is a primitive root $\bmod 11$:

$$
\begin{aligned}
& Z_{11}{ }^{*}=\{1,2,3,4,5,6,7,8,9,10\} \\
& =\left\{2^{10}, 2^{1}, 2^{8}, 2^{2}, 2^{4}, 2^{9}, 2^{7}, 2^{3}, 2^{6}, 2^{5}\right\} \bmod 11
\end{aligned}
$$

- For any b, and a a generator $\bmod p$, a unique i exists s.t. $b=a^{i} \bmod p$.
- i is the discrete logarithm (index) of b for base a, $\bmod p$

$$
\text { write } i=\operatorname{ind}_{a, p}(b)
$$

Diffie-Hellman key exchange

- Public: prime q, generator a modulo q.
- User A selects private, random $x_{A}<q$, and computes $y_{A}=a^{x A} \bmod q$
- User B selects and computes x_{B} and y_{B} same way
- Each sends his y value to the other, and computes the shared key:

$$
\begin{aligned}
&- K=\left(y_{B}\right)^{x A} \bmod q=\left(a^{x B} \bmod q\right)^{x A} \bmod q \\
&=\left(a^{B B \times A}\right) \bmod q=\left(a^{x A \times B}\right) \bmod q=\left(a^{x A} \bmod q\right)^{x B} \bmod q \\
&=\left(y_{A}\right)^{x B} \bmod q=K
\end{aligned}
$$

Diffie-Hellman cryptanalysis

- Known: q, a, y_{A}, y_{B}
- To get k, need x_{A} or x_{B}

$$
x_{A}=\operatorname{ind}_{a, q}\left(y_{B}\right)
$$

- For q a large prime, this is computationally infeasible

ElGamal PKS

- Like Diffie-Hellman, but after exchanging y values, a message $m<q$ can be encrypted:
- select random k in $[1, q-1]$
- compute $K=y_{B}{ }^{k} \bmod q$
- send ($\mathrm{C}_{1}, \mathrm{C}_{2}$) where
- $\mathrm{C}_{1}=a^{k} \bmod q$
- $\mathrm{C}_{2}=K m \bmod q$
- decryption:
- $K=\mathrm{C}_{1}{ }^{x B} \bmod q$
- $m=\mathrm{C}_{2} K^{-1} \bmod q$

