
Public−key cryptography
" Suggested by Diffie & Hellman 1976
" Instead of one secret, shared key (with the 

associated problems of key distribution):
" Use a key pair (e,d) for each user

– one for encryption, one for decryption
– one private (secret), one public
– s.t. c = Ee(m), m = Dd(c)

– in some cases E=D and
m = De(Ed(m)) = Ee(Dd(m)) = Dd(Ee(m))

i.e. the keys (e,d) are inverses of each other



Both confidentiality and 
authenticity

" A has (eA,dA), B has (eB,dB) 
– where e is private, d public

" Confidentiality A ! B: c = EdB(m) 

– can only be decrypted by DeB

" Authenticity A ! B: c = EeA(m) 
– can be decrypted by anyone, but can only have been 

encrypted by EeA

" Both conf&auth A ! B: c = EdB(EeA(m))

– decrypted by DdA(DeB(c))



Requirements on PKS
1. Easy to generate (e,d)
2. Easy to encrypt Ek(m) given k and m

3. Easy to decrypt Dk(c) given k and c

4. Computationally infeasible to find e given d
5. Computationally infeasible to find m given e and 

c = Ee(m)

6. m = De(Ed(m)) = Ee(Dd(m)) = Dd(Ee(m))

(not always)



One−way trapdoor functions
" A one!way function f is a (1!1) function s.t.

– y = f(x)  is easy to compute, but  x = f!1(y) infeasible
" A trapdoor function f is a function s.t.

– x = fk
!1(y) is easy iff k is known (the key)

" Easy: computable in polynomial time, 
proportional to na: n length of input, a constant

" Infeasible: not computable in polynomial time, 
e.g. only in 2n



Examples of one−way trapdoors
" Breaking a leg
" Squeezing toothpaste out of a tube
" Mixing colours
" Multiplication of large prime numbers

– factorization is hard 
" Exponentiation of large numbers

– discrete logarithms are hard



Exponential cryptography
" RSA: for M=C=Zn

– c = me mod n
– m = cd mod n

" Example: e = 5, d = 77, n =  119, m = 19
– c = 195 = 2476099 mod 119 = 66
– m = 6677 " 1.27#10140 mod 119 = 19

" Seems impractical?
" How do we find (e,d) pairs s.t. it works?



Review: Modular arithmetic
" a $ b (mod n) if a!b = kn for some k

– e.g. 17 $ 7 (mod 5)
" Write a mod n = r 

if r is the (positive) residue of a/n
– implies a $ r (mod n)

" Let % be an operation: +, !, ⋅.  Then

(a % b) mod n = ((a mod n) % (b mod n)) mod n
" (Zn,{+,!,⋅}) is a commutative ring:

usual commutative, associative, distributive laws



Efficient exponentiation mod n
" (a # b) mod n = ((a mod n) # (b mod n)) mod n,

so
ab mod n can be computed without generating 
astronomical numbers:
– 35 mod 7 = 243 mod 7 = 5

35 mod 7 = (32)2#3 mod 7 
= ((32 mod 7)#(32 mod 7) mod 7)#3 mod 7
= ((9 mod 7)#(9 mod 7) mod 7)#3 mod 7
= (2#2 mod 7)#3 mod 7 = 12 mod 7 = 5

" Algorithm description in figure 6.7



Rivest, Shamir, Adleman
" RSA: 

– c = me mod n
– m = cd mod n
– m = (me mod n)d mod n = med mod n (= mde mod n)

" Find such e,d, and n using Euler’s theorem



Review: Modular arithmetic (cont)
x is the multiplicative inverse of a modulo n, 

written a!1,
if ax $ 1 (mod n)
– Ex: 3⋅5 $ 1 (mod 14)

The reduced set of residues modulo n is
Z*n = { x & Zn ! {0} : gcd(x,n) = 1 }

Euler’s totient function '(n) is the cardinality of Z*n
Ex: Z*24 ={ 1, 5, 7, 11, 13, 17, 19, 23 }, 
'(24)=8



Euler and primes
Lemma: If p and q are prime, then 
'(pq) = (p!1)#(q!1) = '(p)#'(q)

Proof: in Zpq = [0,pq!1], the numbers not relatively 
prime to pq are (in addition to 0):
– q, 2q, ..., (p!1)q
– p, 2p, ..., (q!1)p

so '(pq) = pq ! ((p!1)+(q!1)+1) = pq ! p ! q + 1
= (p!1)(q!1)

Note: '(p)=p!1, for p a prime



Euler’s theorem
Theorem: for all a and n s.t. gcd(a,n) = 1 (they are 

relatively prime),
a'(n) mod n = 1

Corollary: for p and q primes, n=pq and 0<m<n,
m'(n)+1 = m(p!1)(q!1)+1 $ m (mod n)

If ed mod '(n) = 1, then ed = t'(n)+1 for some t,
so (e,d) is a working key pair (by the corollary).



Making RSA key pairs
ed mod '(n) = 1, and if gcd(d,'(n)), Euler’s 

theorem then gives
e = d'('(n))!1 mod '(n)

Computing e from d and '(n) is easy, and even 
more efficient with an extension of Euclid’s 
algorithm for gcd(d,'(n)) (see section 7.5)

Having '(n) makes RSA easy to break;
'(n)=(p!1)(q!1), so p and q must be secret, while 
n=pq must be public.

Factorizing products of large (prime) numbers is 
hard!



Factorization
" Factorization of n=pq (to find '(n)) is difficult if 

p and q are large
– August 1999: 155!digit (512!bit) n factorized

" 35.7 CPU!years (7.4 months) using 160 workstations, 120 
PII, 12 strong workstations, and one Cray

– February 1999: 140!digit n factorized
" 8.9 CPU!years (9 weeks) using 125 workstations, 60 Pcs, 

and one Cray
– 1024!bit n expected to be 40 million times harder 

than 140!bit



Finding large primes
" Naïve methods too time!consuming
" Guess a number and test it many times

– gives high probability of primeness
" more likely that a bit is flipped by cosmic radiation

– for 200 digits, approx 70 guesses each tested 100 
times is enough

" Desired properties to make factorization harder
– p, q of different length
– (p!1) and (q!1) with large prime factors
– gcd(p!1,q!1) small



RSA cryptanalysis
" Brute force not feasible with large keys (typically 

1024!2048 bits)
" Factorization difficult, but mathematical advances 

may make it significantly easier
– 1977 challenge: 428!bit n would take 40 quadrillion 

years ! took 8 months (1994)
" Timing attack

– based on the time to decrypt (ciphertext!only attack)
– countermeasures: random delay, "blinding"



Simple RSA key exchange
" A sends public key dA and idA to B

" B selects a random session key kS

" B sends c = EdA(kS) to A

" A decrypts kS = DeA(c)

Vulnerable to man!in!the!middle attack



Generators and discrete 
logarithms

" a is a primitive root (or generator) modulo p if 
Zp

* is generated by exponentiation of a mod p
– ex: 2 is a primitive root mod 11:
Z11

* = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 }
= { 210, 21, 28, 22, 24, 29, 27, 23, 26, 25} mod 11

" For any b, and a a generator mod p, a unique i 
exists s.t. b=ai mod p.  

" i is the discrete logarithm (index) of b for base a, 
mod p
write i = inda,p(b)



Diffie−Hellman key exchange
" Public: prime q, generator a modulo q.
" User A selects private, random xA < q, and 

computes yA = axA mod q

" User B selects and computes xB and yB same way
" Each sends his y value to the other, and computes 

the shared key:
– K = (yB)xA mod q = (axB mod q)xA mod q 

= (axB#xA) mod q = (axA#xB) mod q = (axA mod q)xB mod q 
= (yA)xB mod q = K



Diffie−Hellman cryptanalysis
" Known: q, a, yA, yB

" To get k, need xA or xB

xA = inda,q(yB)

" For q a large prime, this is computationally 
infeasible



ElGamal PKS
" Like Diffie!Hellman, but after exchanging y 

values, a message m < q can be encrypted:
– select random k in [1,q!1]
– compute K = yB

k mod q

– send (C1,C2) where
" C1 = ak mod q
" C2 = Km mod q

– decryption:
" K = C1

xB
 mod q

" m = C2K!1 mod q


