
Message authentication and 
digital signatures

" Message authentication
– verify that the message is from the right sender, and 

not modified (incl message sequence)
" Digital signatures

– in addition, non!repudiation
" Two levels:

– authentication function
– authentication protocol (using auth. function)



Authentication functions
" Message encryption

– the whole ciphertext is the authenticator
" Message Authentication Code (MAC)

– Ck(m) => fix length value (the MAC)

" Hash function
– H(m) => fix length hash value



Authentication by encryption
" Conventional encryption

– B receives c = Ek(m) from A, where k is secret
" confidentiality: only A and B know k
" authentication: only A could have sent it, cannot have been 

altered
" but B can forge messages, and A can deny them

– If arbitrary data is sent, how do we know a plaintextI
" add a checksum to the message

– Ek(m + f(m)) ! internal error control

– Ek(m) + f(Ek(m)) ! external error control
" can be forged!



Authentication by encryption
" Public!key encryption

– c = EdB(m) gives confidentiality but no authentication

– c = EeA(m) gives authentication but no confidentiality

– c = EdB(EeA(m)) gives both

– B cannot forge messages, and A cannot deny them
– Still needs checksum for arbitrary data



Message Authentication Code
" Cryptographic checksum

– MAC = Ck(m), where k shared secret key

– send both m and MAC
– recipient computes Ck(m) and compares with MAC

– confidentiality:
" Er(m+Ck(m)) ! plaintext authenticated
" Er(m)+Ck(Er(m)) ! ciphertext authenticated

" Ck need not be reversible
– many m may have same MAC



MAC (cont)
" Advantages to encryption

– faster
– broadcast msgs can be checked at only one place
– random tests possible
– MAC can be kept and checked again any number of 

times
– can give authentication without confidentiality
– conf. and auth. can be handled at different levels
– decryption loses authentication

" Fraud possible: A and B share k



MAC attacks
" C maps m of arbitrary length and 2m m!bit keys to

2n
 n!bit MAC values: collisions possible (likey)

" Brute force attack to find k is no less difficult than
finding a decryption key of same length



Requirements on a MAC fcn
" given m and Ck(m), infeasible to construct m’ s.t. 

Ck(m’) = Ck(m)
– cannot fake a MAC

" Ck(m) uniformly distributed: random m collide 
with probability 1/2n

– thwarts brute!force chosen!plaintext attack
" For random m, Ck(m) = Ck(f(m)) with probability 

1/2n

– no weak spots



MAC based on DES
" Data Authentication Algorithm (DAA)

– ANSI standard
" CBC with initialization vector 0

– pad last plaintext block with zeros
– MAC is leftmost 16!64 bits of last cipherblock



Hash functions
" One!way hash function takes variable!length m 

and produces fix!length hash value H(m), a 
"fingerprint" of m.

" Requirements
– one!way: given x, can’t find m s.t. x=H(m)

" difficulty 2n

– weak collision resistance: given x, can’t find y!x s.t. 
H(x)=H(y)

" difficulty 2n

– strong collision resistance: can’t find pair (x,y) s.t. 
H(x)=H(y)

" difficulty 2n/2



Hash usage
1. m+H(m) ! no confidentiality or authentication
2. Ek(m+H(m)) ! auth&conf

3. m+Ek(H(m)) ! same as MAC

4. m+EeA(H(m)) ! authentication (digital signature)

5. Ek(m+EeA(H(m))) ! and confidentiality

6. m+H(m+k) ! authentication without encryption
7. Ek(m+H(m+k)) ! and confidentiality



Hash algorithms
" MD5

– widely used (e.g. PGP)
– 128!bit hash values: collisions found "in 24 days"

" SHA!1 and RIPEMD!160
– 160!bit hash values
– now preferred over MD5 (e.g. in PGP)

" (see chapter 9)



Digital signatures
" MAC is not enough

– recipient can fake it since he knows k
– sender can therefore deny messages

" Digital signatures
– verify the author, time and date
– authenticates the contents
– verifiable by third party



Varieties of digital signatures
" Direct

– only source and destination involved
– ex: use PKS!encrypted hash values

" problem: sender can claim private key stolen
(cf. credit card loss), even with timestamp

" Arbitrated
– signed messages sent through trusted server 

" c sends idX+EeX(idX+EdY(EeX(m))) to arbitrer A
" A checks c’s keys and sends EeA(idX+EdY(EeX(m))+T) to e
" e can find idX encrypted with A’s private key
" A doesn’t see the message m



Digital Signature Standard
" DSS uses 

– SHA!1 for hash value
– Digital Signature Algorithm (DSA)

" based on ElGamal
" can be fast: possible to precalculate slow things

" DSS can be used in PGP



Authentication protocols
" Mutual authentication

– both parties ensure each other’s identities
and, e.g., exchange session keys

" One!way authentication
– recipient ensures sender is authentic

e.g. for email



Mutual authentication
" Confidentiality and timeliness important

– replay attacks could break confidentiality and/or 
authenticity

– use timestamps or nonces (use!once random values)
" Conventional encryption

– requires trusted Key Distribution Center
– each user has a secret Master Key, shared with KDC

" Public!key encryption
– possible with or without KDC



One!way authentication
" Desirable to avoid handshake protocols
" Conventional encryption: use KDC
" Public!key

– encrypt whole message twice for conf & auth
– faster: combine PK and conventional

" send EdB(kS)+EkS(m) ! confidentiality
" send m+EeA(m) ! "authenticity" (cf. man!in!the!middle)
" send EdB(kS)+EkS(m+EeA(m)) ! auth+conf (PGP)



Key management for PKS
" Distribution of public keys

– Public announcement
" forgery possible

– Public directory run by trusted authority
" keys submitted in secure+authentic way
" keys retrieved from directory

– using authentic paper directory
– electronically from authority using PKS



Public!key certificates
" Avoid bottleneck at directory authority

– Use Certificate Authority (CA)
" Requirements

– anyone can find the name and public key of the 
certificate owner in the certificate

– anyone can verify that the certificate was made by 
CA

– anyone can verify the certificate is current
– only the CA can create/update certificates



Certificates
" A certificate consists of the owner’s name, public 

key, and a timestamp, encrypted with the CA’s 
private key
– CA = EeCA(idA,dA,T)

" To start communication, A sends his cert to B
– B can decrypt using CA’s public key, validate the 

timestamp, check idA, and use dA



X.509 Certificate Standard
" Used in SSL/TLS, S/MIME, SET, Ipsec,...
" Uses PKS and digital signatures

– doesn’t specify which algorithms (but recommends)
" Kernel

– format of certificates (fig 11.3)
– CA hierarchy (fig 11.4)
– revocation of certificates

" CA has list of revoked certificates
– one!, two!, and three!way authentication procedures



PGP key management
" Each user has two key!rings

– private key ring
" private keys (encrypted), public key ID,...

– public key ring
" public keys (own and others), user id, trust, signatures,...

" Key trust and validity: distributed
– keys signed to certify their validity
– a key is valid if signed by n (1) fully trusted user,

or by m (3) semi!trusted users
" Keys distributed by key servers


