Cryptology

Two essential parts:

- Cryptography
- encryption of plaintext to ciphertext (cryptogram)
- decryption of ciphertext to plaintext
- Cryptanalysis
- breaking cryptography
- necessary when developing cryptographic systems!

Crypto systems

A crypto system S can be defined as a tuple
$S=\langle\boldsymbol{M}, \boldsymbol{C}, \boldsymbol{K}, \boldsymbol{E}, \boldsymbol{D}\rangle$
\boldsymbol{M} - set of plaintexts (messages)
\boldsymbol{C} - set of ciphertexts (cryptograms)
\boldsymbol{K} - set of keys
\boldsymbol{E} - set of encryption functions
\boldsymbol{D} - set of decryption functions

- for every $k \in \boldsymbol{K}$ there are $E_{k} \in \boldsymbol{E}, D_{k} \in \boldsymbol{D}$ s.t. for all $m \in \boldsymbol{M}, D_{k}\left(E_{k}(m)\right)=m$
- for every $k \in \boldsymbol{K}$ and $c \in \boldsymbol{C}$, there is only one $m \in \boldsymbol{M}$ s.t. $E_{k}(m)=c$
(i.e., different m can not be encrypted to the same c.)

Properties of crypto systems

1. E_{k} and D_{k} must be efficient and easy to use.
2. Algorithms \boldsymbol{E} and \boldsymbol{D} should be assumed known.
3. Without k, it should be infeasible to deduce
4. m from c, where $c=E_{k}(m)$
5. D_{k} from c even if m is known, for $m=D_{k}(c)$
6. E_{k} from m even if c is known, for $c=E_{k}(m)$
7. a (false) c^{\prime} s.t $E_{k}(m)=c^{\prime}$ for any m, unless E_{k} and m are known.

Classification of crypto systems

1. type of operations used

- substitution
- transposition

2. number of keys used by sender/receiver

- one: symmetric, single-key, secret-key, conventional
- two: asymmetric, two-key, public-key

3. how the plaintext is processed

- block cipher: one block (e.g. 64 bits) at a time
- stream cipher: one element (e.g. 8 bits) at a time

Cryptanalysis attacks

1. Ciphertext only: c (and \boldsymbol{E}) known

- try all keys ("brute force") - impractical with large \boldsymbol{K}
- statistical analysis, given type of plaintext (English etc)

2. Known plaintext: one or more (m, c) pairs known

- e.g. "login: " prompt, "\%PS-" header

3. Chosen plaintext

- analyst can adapt plaintexts to results of analysis

4. Chosen ciphertext
5. Chosen text

- useful e.g. for asymmetric crypto systems

Crypto system security

- Unconditionally secure
- unbreakable regardless of how much ciphertext, time or computing resources
- one such known: one-time-pad
- Computationally secure
- the cost of breaking the cipher exceeds the value of the encrypted information
- the time required to break the cipher exceeds the useful lifetime of the information

Computational security

Speed of computation increases rapidly!
ex: brute force average time required

Key size	$\mathbf{1}$ encr/us	$\mathbf{1 0 M}$ encr/us
32 bits	36 min	2.15 ms
56 bits	1142 years	10 hrs
128 bits	$5.4 \cdot 10 \mathrm{e} 24$ years	$6.4 \cdot 10 \mathrm{e} 18$ years

DES (Data Encryption Standard, 1977) was broken in 22 hrs 15 minutes in January 1999!
(using special hardware $+100,000 \mathrm{PC} /$ workstations)

Classical crypto systems

- Caesar cipher (shift cipher)
- substitute each element (letter) with the one n positions later in the alphabet (modulo length of alphabet)
- ex: shift 3, English alphabet

meet	me	after	the	toga	party
PHHW	PH	DIWHU	WKH	WRJD	SDUWB

- Caesar: $n=3$
- rot13: $n=13$
(used on Internet for possibly offensive jokes)

Shift cipher

- Interpret letters $\mathrm{A}, \mathrm{B}, \mathrm{C}, \ldots, \mathrm{Z}$ as numbers $0,1,2, \ldots, 25$
$=\boldsymbol{Z}_{26}$
- Define

$$
\begin{aligned}
& c_{i}=E_{k}\left(m_{i}\right)=\left(m_{i}+k\right) \bmod 26 \\
& m_{i}=D_{k}\left(\mathrm{c}_{i}\right)=\left(\mathrm{c}_{i}-k\right) \bmod 26
\end{aligned}
$$

- Exercise: check that this forms a crypto system!
- Homework: write a program (for Swedish!)

Breaking shift ciphers

- Brute force: try all keys
- feasible for simple shift cipher, because
- the algorithm is known
- there are few keys
- it is easy to recognize the plaintext

General substitution cipher

- Instead of just shifting the alphabet, mix it:
abcdefghijklmnopqrstuvwxyz D XVRHQKLEWFJIATMZPYCGBNOSU
- Now: 26! different keys $\left(>4 \cdot 10^{26}\right)$
- brute force not feasible

Breaking substitution ciphers

- Easy to break if we know the language
- analyse the relative frequencies of letters
- compare and match
- More difficult for short ciphertexts
- use digram analysis: relative frequencies of pairs of letters
- trigrams...
- Generally useful method for recognizing plaintext

Improving substitution ciphers

- Multiliteral ciphers
- Playfair cipher: encrypt digrams to digrams
- considered "unbreakable", but easily broken with a few hundred letters of ciphertext
- Hill cipher: encrypt n letters to n letters
- difficult with ciphertext-only attack, but easy with known plaintext
- Polyalphabetical ciphers
- use several different monoalphabetical substitutions

Polyalphabetical ciphers

- Model:

$$
\begin{aligned}
& \text { for } m=m_{p} \ldots, m_{n^{\prime}} c=c_{p}, \ldots, c_{n^{\prime}} k=k_{l^{\prime}, \ldots k_{d}} \\
& \quad c=E_{k}(m)=f_{1}\left(m_{1}\right) \cdots f_{d}\left(m_{d}\right) \cdot f_{1}\left(m_{d+1}\right) \cdots f_{d}\left(m_{2 d}\right) \cdots
\end{aligned}
$$

- Example: Vigenère cipher (1500, "unbreakable" until 1800s)
$-f_{i}(m)=m+k_{i}(\bmod n)$

$$
\begin{aligned}
& \mathrm{m}=\mathrm{RENAISSANCE} \\
& \mathrm{k}=\mathrm{BANDBANDBAN}
\end{aligned}
$$

i.e., d shift ciphers combined $\quad \mathrm{c}=\mathrm{S}$ EAD J S F D O CR

- Previous years exercise to break

Breaking Vigenère

- The cipher can be broken because of the periodicity of the key
- if two identical strings happen to be at the same place relative to the key, they are encrypted the same
- the distance between repetitions in the ciphertext is a clue to the length of the key
- common factors give good initial values
- with the key length d, break d shift ciphers using frequency analysis

Strengthen polyalphabetic ciphers

- Lengthen the key
- Book ciphers: use a predefined part of a book as key
- More difficult to break
- still possible: the key has language structure
- Remove structure of key: one-time-pad
- use a random key as long as the message
- use each key only once
- UNBREAKABLE!

Encrypting binary data

- Vernam cipher:

$$
\begin{aligned}
& -c_{i}=E_{k}\left(m_{i}\right)=m_{i} \oplus k \\
& -m_{i}=D_{k}\left(c_{i}\right)=c_{i} \oplus k \\
& m=(m \oplus k) \oplus k=m \oplus(k \oplus k)=m \oplus 0=m
\end{aligned}
$$

- Very good for one-time-pad
- Very bad if you use the same key twice
- known plaintext attack:

$$
c_{l} \oplus m_{l}=\left(m_{l} \oplus k\right) \oplus m_{l}=\left(m_{l} \oplus m_{l}\right) \oplus k=k
$$

Generalising shift ciphers

- Affine ciphers
- for $M=C=Z_{n}$, define
$c=E_{k}(m)=(a m+b) \bmod n$
$m=D_{k}(c)=\left(a^{\prime} m+b^{\prime}\right) \bmod n$
where k is (a, b) resp $\left(a^{\prime}, b^{\prime}\right)$
- Must choose k s.t. E_{k} is injective (reversible)
ex: $(2,1)$ is not a good key in \boldsymbol{Z}_{26}
- $(2 \cdot 13+1) \bmod 26=1$
- $(2 \cdot 0+1) \bmod 26=1$

Modular arithmetic

- $a \equiv b(\bmod n)$ if $a-b=k n$ for some k
- e.g. $17 \equiv 7(\bmod 5)$
- Write $a \bmod n=r$ if r is the (positive) residue of a / n
- implies $a \equiv r(\bmod n)$
- Let Δ be an operation:,,$+- \cdot$ Then
$(a \diamond b) \bmod n=((a \bmod n) \diamond(b \bmod n)) \bmod n$
- $\left(\mathbf{Z}_{n},\{+,-, \cdot\}\right)$ is a commutative ring: usual commutative, associative, distributive laws

Modular arithmetic (cont)

x is the multiplicative inverse of a modulo n, written a^{-1}, if $a x \equiv 1(\bmod n)$

- Ex: $3 \cdot 5 \equiv 1(\bmod 14)$

The reduced set of residues modulo n is

$$
Z_{n}^{*}=\left\{x \in Z_{n}-\{0\}: \operatorname{gcd}(x, n)=1\right\}
$$

Euler's totient function $\phi(n)$ is the cardinality of $\boldsymbol{Z}^{*}{ }_{n}$

$$
\operatorname{Ex}: \boldsymbol{Z}_{24}^{*}=\{1,5,7,11,13,17,19,23\},
$$

$$
\phi(24)=8
$$

Affine ciphers (cont)

- To choose a key s.t. encryption is injective, $a m+b \equiv c(\bmod n)$ $a m \equiv c-b(\bmod n)$ must have one solution wrt. m.
- If $\operatorname{gcd}(a, n)>1$, then, e.g., $a m \equiv 0(\bmod n)$ has two solutions $m=0$ and $m=n /(\operatorname{gcd}(a, n))$
- If $\operatorname{gcd}(a, n)=1$, then if there are two solutions d, d, so $a d \equiv a d^{\prime}(\bmod n)$. Then $a\left(d-d^{\prime}\right) \equiv 0(\bmod n)$, so $n \operatorname{la}\left(d-d^{\prime}\right)$, and since $\operatorname{gcd}(a, n)=1, n /\left(d-d^{\prime}\right)$, and $d \equiv d^{\prime}(\bmod n)$, so the solution is unique!

Affine ciphers (cont)

- Furthermore, as x varies over \boldsymbol{Z}_{n} and $\operatorname{gcd}(a, n)=1$, $(a x+b) \bmod n$ will have n different values, so $a x \equiv b(\bmod n)$ has a unique solution for every value of b.
- The number of keys a s.t. $\operatorname{gcd}(a, n)=1$ is $\phi(n)$, so the number of keys (a, b) of an affine cipher is $n \cdot \phi(n)$.
- ex: an affine cipher on \boldsymbol{Z}_{26} has $26 \cdot 12=312$ keys.

Transposition ciphers

- Columnar transposition
- write the plaintext row by row in a rectangle, read the ciphertext column by column (for some permutation of columns)
- Periodic permutation
- permute the columns, read row by row (easier to encrypt row-by-row, don't need all cleartext)
- Broken by frequency analysis of digrams/trigrams

Strengthening ciphers

- Try combining several keys: product ciphers

$$
\begin{aligned}
& -c=E_{n}\left(E_{n-1}\left(\ldots\left(E_{1}(m)\right) \ldots\right)\right)=E_{k}^{\prime}(m) \\
& -m=D_{1}\left(D_{2}\left(\ldots\left(D_{n}(c)\right) \ldots\right)\right)=D_{k}^{\prime}(c)
\end{aligned}
$$

- If $E^{\prime}{ }_{k}=E_{k^{\prime}}$ for some single k^{\prime}, the cipher is idempotent (ex: shift cipher)
- Two crypto systems S_{1} and S_{2} commute if $S_{1} S_{2}=S_{2} S_{1}$
- A crypto system S is idempotent if $S=S S$
- A function f is an involution if $f(f(x))=x$

Product ciphers

- If S_{1} and S_{2} are idempotent and commute, then their product is also idempotent.
- so no strength is won
- e.g. Caesar cipher
- So: for a product cipher to increase cryptographic strength, its parts must not be idempotent!
- The composition of two involutions is not necessarily an involution.

