
Random numbers
" Random numbers are important

– key generation for PKS
" primality testing

– key generation for symmetric ciphers
– nonces (one!time values)

" Randomness makes guessing impossible



Requirements on a sequence of 
random numbers

" Randomness (statistical)
1. Uniform distribution: relative frequency curve flat
2. Independence: no single value can be inferred from 

others in the sequence
" Unpredictability (practical)

– future elements not predictable from earlier
– even though sequence is generated by deterministic 

algorithm



Sources of randomness
" True randomness

– physical noise generators
" radiation event detectors etc
" impractical, slow, low precision

" Tables of statistically random numbers
– limited in size
– predictable

" Algorithms
– deterministic: not statistically random
– pseudo!randomness suffices (if good enough)



Requirements on random number 
generation function

" Should generate full period [0,m] before repeating
the sequence

" Should pass reasonable tests on statistical 
randomness

" Should be efficiently implemented



Linear Congruences
" Lehmer, 1951:

xn+1 = (a xn + c) mod m, given x0, a, c and m
" Examples:

– a=c=1 gives +1 mod m
– a=7, c=0, m=32, x0=1 gives {7,17,23,1}

" If m prime, c = 0, some a pass all three tests
– Ex: m=231!1, a=75 widely used for statistics



Linear congruences (cont)
" Linear congruences are fast, simple, pass 

requirements
" Linear congruences are predictable

– given the parameters a, c, m, a single x makes the rest 
predictable

– given part of the sequence, parameters can be found
– Ex: given xn, xn+1, xn+2, xn+3

xn+1 = (a xn + c) mod m
xn+2 = (a xn+1 + c) mod m
xn+3 = (a xn+2 + c) mod m



Linear Feedback Shift Registers
" Shift register R=(rn,..., r1) of bits

Tap sequence T=(tn,..., tn) of bits

" Output: r1

" Feedback:
r’i = ri+1 for i![1,n!1]
r’n = TR = "i=1

n tiri mod 2 = t1r1#…# tnrn

" So R’=HR mod 2, where H is a n×n matrix, 
whose first row is T, and the rest has 1 on the 
subdiagonal, 0 otherwise



LFSR (cont)
" An n!bit LFSR generates a pseudo!random bit 

sequence of length 2n!1 if T causes R to cycle 
through all non!zero values before repeating

" This happens if the polynomial
T(x) = tnx

n + tn!1x
n!1 + ... + t1x

1 + 1
is primitive

" A primitive polynomial of degree n is an 
irreducible polynomial that divides x2n!1+1 but not
xd+1 for any d that divides 2n!1



LFSR example
" T = (1,0,0,1)

H = 1 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

" T(x) = x4+x+1 is primitive: given non!zero R, 
generates all 15 non!zero values of Z16 :
0001, 1000, 1100, 1110, 1111, 0111, 1011, 0101, 
1010, 1101, 0110, 0011, 1001, 0100, 0010

" Output stream (rightmost bits): 
100011110101100



LFSR for encryption
" LFSR can be used in Vernam ciphers

ci = mi#ki

" Easily broken: 2n pairs of (c,m) sufficient:
– mi#ci = mi#(mi#ki) = ki for i![1,2n]

– Let X=((kn,..., k1),(kn+1,..., k2),...,(k2n!1,...,kn))
and Y=((kn+1,..., k2),(kn+2,..., k3),...,(k2n,...,kn+1))

– Y = HX mod 2, and since X is always 
nonsingular, 
H = YX!1 mod 2, and T is the first row of H.

– Inverting X is O(n3): 1 day for n=1000, 1 MIPS



LFSR (cont)
" Combinations of LFSR:

– Geffe: z=(a$b)#(!b$c)
where a=LFSR(7), b=LFSR(5), c=LFSR(8)
gives period (27!1)(25!1)(28!1) > 109

– Still weak: p(z=a) = 3/4, p(z=c) = ¼
– GSM uses "A5" with LFSRs of length 19, 22, 23.

" LFSRs are fast!



Cryptographic random number 
generators

" In cryptography, we want to reduce redundancy 
and give minimal information about m given c.

" Use this for random number generation!
" Examples:

– Cyclic encryption: xi=Ek(ni mod m)
where ni+1=ni+1
Since ni%ni+1, xi%xi+1, and decryption without k is hard, 
so the sequence is (computationally) unpredictable!

– E.g, use DES in OFB mode, use pseudo!random 
generator instead of counter



ANSI X9.17 PRNG
" Uses three triple DES encryptions (112!bit key)

– two "random" sources: date/time and seed
– feedback of seed value
– random value Ri does not reveal seed Vi+1



Blum Blum Shub
" p, q large primes s.t. p&q&3 (mod 4)

n=pq
s random s.t. gcd(n,s)=1

" Output: bit sequence Bi

" x0 = s2 mod n
for (i = 1; i>0; i++) {
    xi = (xi!1)2 mod n;
    Bi = xi mod 2;
}



BBS is a CSPRBG
" The BBS is a cryptographically secure 

pseudo!random bit generator (CSPRBG):
it passes the next!bit test:
– Given the first k bits, there is no polynomial 

algorithm to predict the next bit with probability > ½
" Security based on factorization of n.


