Random numbers

- Random numbers are important
- key generation for PKS
- primality testing
- key generation for symmetric ciphers
- nonces (one-time values)
- Randomness makes guessing impossible

Requirements on a sequence of random numbers

- Randomness (statistical)

1. Uniform distribution: relative frequency curve flat
2. Independence: no single value can be inferred from others in the sequence

- Unpredictability (practical)
- future elements not predictable from earlier
- even though sequence is generated by deterministic algorithm

Sources of randomness

- True randomness
- physical noise generators
- radiation event detectors etc
- impractical, slow, low precision
- Tables of statistically random numbers
- limited in size
- predictable
- Algorithms
- deterministic: not statistically random
- pseudo-randomness suffices (if good enough)

Requirements on random number generation function

- Should generate full period $[0, m]$ before repeating the sequence
- Should pass reasonable tests on statistical randomness
- Should be efficiently implemented

Linear Congruences

- Lehmer, 1951: $x_{n+1}=\left(a x_{n}+c\right) \bmod m$, given x_{0}, a, c and m
- Examples:
- $a=c=1$ gives $+1 \bmod m$
$-a=7, c=0, m=32, x_{0}=1$ gives $\{7,17,23,1\}$
- If m prime, $c=0$, some a pass all three tests
- Ex: $m=2^{31}-1, a=7^{5}$ widely used for statistics

Linear congruences (cont)

- Linear congruences are fast, simple, pass requirements
- Linear congruences are predictable
- given the parameters a, c, m, a single x makes the rest predictable
- given part of the sequence, parameters can be found
- Ex: given $x_{n}, x_{n+1}, x_{n+2}, x_{n+3}$
$x_{n+1}=\left(a x_{n}+c\right) \bmod m$
$x_{n+2}=\left(a x_{n+1}+c\right) \bmod m$
$x_{n+3}=\left(a x_{n+2}+c\right) \bmod m$

Linear Feedback Shift Registers

- Shift register $R=\left(r_{n}, \ldots, r_{1}\right)$ of bits Tap sequence $T=\left(t_{n}, \ldots, t_{\mathrm{n}}\right)$ of bits
- Output: r_{1}
- Feedback:

$$
\begin{aligned}
& r_{i}^{\prime}=r_{i+1} \text { for } i \in[1, n-1] \\
& r_{n}^{\prime}=T R=\sum_{i=1}{ }^{n} t_{i} r_{i} \bmod 2=t_{1} r_{1} \oplus \ldots \oplus t_{n} r_{n}
\end{aligned}
$$

- So $R^{\prime}=H R \bmod 2$, where H is a $n \times n$ matrix, whose first row is T, and the rest has 1 on the subdiagonal, 0 otherwise

LFSR (cont)

- An n-bit LFSR generates a pseudo-random bit sequence of length $2^{n}-1$ if T causes R to cycle through all non-zero values before repeating
- This happens if the polynomial $T(x)=t_{n} x^{n}+t_{n-1} x^{n-1}+\ldots+t_{1} x^{1}+1$ is primitive
- A primitive polynomial of degree n is an irreducible polynomial that divides $x^{2 n-1}+1$ but not $x^{d}+1$ for any d that divides $2^{n}-1$

LFSR example

- $T=(1,0,0,1)$

$$
H=\begin{array}{llll}
1 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}
$$

- $T(x)=x^{4}+x+1$ is primitive: given non-zero R, generates all 15 non-zero values of \boldsymbol{Z}_{16} : 0001, 1000, 1100, 1110, 1111, 0111, 1011, 0101, 1010, 1101, 0110, 0011, 1001, 0100, 0010
- Output stream (rightmost bits): 100011110101100

LFSR for encryption

- LFSR can be used in Vernam ciphers $c_{i}=m_{i} \oplus k_{i}$
- Easily broken: $2 n$ pairs of (c, m) sufficient:
- $m_{i} \oplus c_{i}=m_{i} \oplus\left(m_{i} \oplus k_{i}\right)=k_{i}$ for $i \in[1,2 n]$
- Let $X=\left(\left(k_{n}, \ldots, k_{1}\right),\left(k_{n+1}, \ldots, k_{2}\right), \ldots,\left(k_{2 n-1}, \ldots, k_{n}\right)\right)$
and $Y=\left(\left(k_{n+1}, \ldots, k_{2}\right),\left(k_{n+2}, \ldots, k_{3}\right), \ldots,\left(k_{2 n}, \ldots, k_{n+1}\right)\right)$
- $Y=H X \bmod 2$, and since X is always nonsingular, $H=Y X^{-1} \bmod 2$, and T is the first row of H.
- Inverting X is $O\left(n^{3}\right): 1$ day for $n=1000,1$ MIPS

LFSR (cont)

- Combinations of LFSR:
- Geffe: $z=(a \otimes b) \oplus(-b \otimes c)$ where $a=\operatorname{LFSR}(7), b=\operatorname{LFSR}(5), c=\operatorname{LFSR}(8)$ gives period $\left(2^{7}-1\right)\left(2^{5}-1\right)\left(2^{8}-1\right)>10^{9}$
- Still weak: $\mathrm{p}(z=a)=3 / 4, \mathrm{p}(z=c)=1 / 4$
- GSM uses "A5" with LFSRs of length 19, 22, 23.
- LFSRs are fast!

Cryptographic random number generators

- In cryptography, we want to reduce redundancy and give minimal information about m given c.
- Use this for random number generation!
- Examples:
- Cyclic encryption: $x_{i}=E_{k}\left(n_{i} \bmod m\right)$ where $n_{i+1}=n_{i}+1$ Since $n_{i} \neq n_{i+1}, x_{i} \neq x_{i+1}$, and decryption without k is hard, so the sequence is (computationally) unpredictable!
- E.g, use DES in OFB mode, use pseudo-random generator instead of counter

ANSI X9.17 PRNG

- Uses three triple DES encryptions (112-bit key)
- two "random" sources: date/time and seed
- feedback of seed value
- random value R_{i} does not reveal seed V_{i+1}

Blum Blum Shub

- p, q large primes s.t. $p \equiv q \equiv 3(\bmod 4)$

$$
n=p q
$$

s random s.t. $\operatorname{gcd}(n, s)=1$

- Output: bit sequence B_{i}
- $x_{0}=s^{2} \bmod n$

$$
\text { for }(i=1 ; i>0 ; i++)\{
$$

$$
x_{i}=\left(x_{i-1}\right)^{2} \bmod n ;
$$

$$
B_{i}=x_{i} \bmod 2
$$

\}

BBS is a CSPRBG

- The BBS is a cryptographically secure pseudo-random bit generator (CSPRBG):
it passes the next-bit test:
- Given the first k bits, there is no polynomial algorithm to predict the next bit with probability $>1 / 2$
- Security based on factorization of n.

