Random numbers

- Random numbers are important
 - key generation for PKS
 - primality testing
 - key generation for symmetric ciphers
 - nonces (one-time values)
- Randomness makes guessing impossible

Requirements on a sequence of random numbers

- Randomness (statistical)
 - 1. Uniform distribution: relative frequency curve flat
 - 2. Independence: no single value can be inferred from others in the sequence
- Unpredictability (practical)
 - future elements not predictable from earlier
 - even though sequence is generated by deterministic algorithm

Sources of randomness

- True randomness
 - physical noise generators
 - radiation event detectors etc
 - impractical, slow, low precision
- Tables of statistically random numbers
 - limited in size
 - predictable
- Algorithms
 - deterministic: not statistically random
 - pseudo-randomness suffices (if good enough)

Requirements on random number generation function

- Should generate full period [0,m] before repeating the sequence
- Should pass reasonable tests on statistical randomness
- Should be efficiently implemented

Linear Congruences

- Lehmer, 1951:
 - $x_{n+1} = (a x_n + c) \mod m$, given x_0 , a, c and m
- Examples:
 - -a=c=1 gives $+1 \mod m$
 - -a=7, c=0, m=32, $x_0=1$ gives $\{7,17,23,1\}$
- If m prime, c = 0, some a pass all three tests
 - Ex: $m=2^{31}-1$, $a=7^5$ widely used for statistics

Linear congruences (cont)

- Linear congruences are fast, simple, pass requirements
- Linear congruences are predictable
 - given the parameters a, c, m, a single x makes the rest predictable
 - given part of the sequence, parameters can be found

- Ex: given
$$x_n$$
, x_{n+1} , x_{n+2} , x_{n+3}
 $x_{n+1} = (a x_n + c) \mod m$
 $x_{n+2} = (a x_{n+1} + c) \mod m$
 $x_{n+3} = (a x_{n+2} + c) \mod m$

Linear Feedback Shift Registers

- Shift register $R=(r_n,...,r_1)$ of bits Tap sequence $T=(t_n,...,t_n)$ of bits
- Output: r_1
- Feedback:

$$r'_{i} = r_{i+1} \text{ for } i \in [1, n-1]$$

 $r'_{n} = TR = \sum_{i=1}^{n} t_{i} r_{i} \mod 2 = t_{1} r_{1} \oplus ... \oplus t_{n} r_{n}$

• So $R'=HR \mod 2$, where H is a $n \times n$ matrix, whose first row is T, and the rest has 1 on the subdiagonal, 0 otherwise

LFSR (cont)

- An n-bit LFSR generates a pseudo-random bit sequence of length 2^n -1 if T causes R to cycle through all non-zero values before repeating
- This happens if the polynomial $T(x) = t_n x^n + t_{n-1} x^{n-1} + ... + t_1 x^1 + 1$ is primitive
- A primitive polynomial of degree n is an irreducible polynomial that divides $x^{2n-1}+1$ but not x^d+1 for any d that divides 2^n-1

LFSR example

```
• T = (1,0,0,1)

H = \begin{bmatrix} 1 & 0 & 0 & 1 \\ & 1 & 0 & 0 & 0 \\ & & 0 & 1 & 0 & 0 \\ & & & 0 & 0 & 1 & 0 \end{bmatrix}
```

- $T(x) = x^4 + x + 1$ is primitive: given non–zero R, generates all 15 non–zero values of \mathbf{Z}_{16} : 0001, 1000, 1100, 1110, 1111, 0111, 1011, 0101, 1010, 1101, 0110, 0011, 1001, 0100, 0010
- Output stream (rightmost bits): 100011110101100

LFSR for encryption

- LFSR can be used in Vernam ciphers $c_i = m_i \oplus k_i$
- Easily broken: 2n pairs of (c,m) sufficient:
 - $-m_i \oplus c_i = m_i \oplus (m_i \oplus k_i) = k_i \text{ for } i \in [1,2n]$
 - Let $X = ((k_n, ..., k_1), (k_{n+1}, ..., k_2), ..., (k_{2n-1}, ..., k_n))$ and $Y = ((k_{n+1}, ..., k_2), (k_{n+2}, ..., k_3), ..., (k_{2n}, ..., k_{n+1}))$
 - $Y = HX \mod 2$, and since X is always nonsingular,
 - $H = YX^{-1} \mod 2$, and T is the first row of H.
 - Inverting X is $O(n^3)$: 1 day for n=1000, 1 MIPS

LFSR (cont)

- Combinations of LFSR:
 - Geffe: $z=(a \otimes b) \oplus (-b \otimes c)$ where a=LFSR(7), b=LFSR(5), c=LFSR(8)gives period $(2^7-1)(2^5-1)(2^8-1) > 10^9$
 - Still weak: p(z=a) = 3/4, $p(z=c) = \frac{1}{4}$
 - GSM uses "A5" with LFSRs of length 19, 22, 23.
- LFSRs are **fast**!

Cryptographic random number generators

- In cryptography, we want to reduce redundancy and give minimal information about m given c.
- Use this for random number generation!
- Examples:
 - Cyclic encryption: $x_i = E_k(n_i \mod m)$ where $n_{i+1} = n_i + 1$ Since $n_i \neq n_{i+1}$, $x_i \neq x_{i+1}$, and decryption without k is hard, so the sequence is (computationally) unpredictable!
 - E.g, use DES in OFB mode, use pseudo-random generator instead of counter

ANSI X9.17 PRNG

- Uses three triple DES encryptions (112-bit key)
 - two "random" sources: date/time and seed
 - feedback of seed value
 - random value R_i does not reveal seed V_{i+1}

Blum Blum Shub

- p, q large primes s.t. $p \equiv q \equiv 3 \pmod{4}$ n = pqs random s.t. gcd(n,s) = 1
- Output: bit sequence B_i
- $x_0 = s^2 \mod n$ for (i = 1; i>0; i++) { $x_i = (x_{i-1})^2 \mod n$; $B_i = x_i \mod 2$; }

BBS is a CSPRBG

- The BBS is a cryptographically secure pseudo-random bit generator (CSPRBG): it passes the *next-bit* test:
 - Given the first k bits, there is no polynomial algorithm to predict the next bit with probability > $\frac{1}{2}$
- Security based on factorization of *n*.