Random numbers

 Random numbers are important
- key generation for PKS
* primality testing
— key generation for symmetric ciphers

— nonces (one—time values)

* Randomness makes guessing impossible

Requirements on a sequence of
random numbers

 Randomness (statistical)

1. Uniform distribution: relative frequency curve flat

2. Independence: no single value can be inferred from
others 1n the sequence

e Unpredictability (practical)

— future elements not predictable from earlier

— even though sequence 1s generated by deterministic
algorithm

Sources of randomness

e True randomness

— physical noise generators

e radiation event detectors etc

* impractical, slow, low precision
e Tables of statistically random numbers
— limited in size
— predictable
* Algorithms

— deterministic: not statistically random

- pseudo—randomness suffices (if good enough)

Requirements on random number
generation function

* Should generate full period [0,m] before repeating
the sequence

* Should pass reasonable tests on statistical
randomness

* Should be efficiently implemented

Linear Congruences

e [.ehmer, 1951:
x =(a x + c¢) mod m, given X, a, C and m

n

 Examples:

- a=c=1 gives +1 mod m
- a=7,c=0,m=32, x,=1 gives {7,17,23,1}

e If m prime, ¢ =0, some a pass all three tests

- Ex: m=2°'-1, a="7" widely used for statistics

Linear congruences (cont)

* Linear congruences are fast, simple, pass
requirements

* Linear congruences are predictable

- given the parameters a, ¢, m, a single x makes the rest
predictable

— given part of the sequence, parameters can be found

- Ex:givenx,x ,x
n

n+1’ " n+2’ xn+3

x =(ax + c)modm

n

x ,=(ax _ +c)modm

n

x ,=(ax _,+c)modm

n

Linear Feedback Shift Registers

Shift register R=(r,..., 1) of bits
Tap sequence T=(z ,..., t) of bits

Output: r,

Feedback:

r’.=r_ tfori€[l,n—1]

r’ =TR=3% "trmod2=tr®..®tr

So R’=HR mod 2, where H 1s a nxn matrix,

whose first row 1s 7', and the rest has 1 on the
subdiagonal, O otherwise

LFSR (cont)

* An n—bit LFSR generates a pseudo—random bit
sequence of length 2"—1 if T causes R to cycle
through all non—zero values before repeating

e This happens if the polynomial
Tx)=tx"+1t x""'+ .. +rx' +1
1S primitive

* A primitive polynomial of degree n 1s an

irreducible polynomial that divides x**~'+1 but not
x‘+1 for any d that divides 2"—1

LFSR example

. T=(1.00.1)
H= 1001

0
0
1

oo =
o -0
o oo

o T(x) =x"+x+1 is primitive: given non—zero R,
generates all 15 non—zero values of Z -

0001, 1000, 1100, 1110, 1111,0111, 1011, 0101,
1010, 1101,0110, 0011, 1001, 0100, 0010

e Output stream (rightmost bits):
100011110101100

LFSR for encryption

 LFSR can be used in Vernam ciphers
Ci = mi@ki

e Easily broken: 2n pairs of (c,m) sufficient:
- m®c, = m@(mPk) = k. for i€[1,2n]
— Let X_((k yeeey 1) (k +10°°°° 2)’ 9(n—1°°"° 9k))

and Y=((k ..., K))(k soes K)sees(K, oeik)

- Y = HX mod 2, and since X 1s always
nonsingular,
H = YX' mod 2, and 7 is the first row of H.

- Inverting X is O(n’): 1 day for n=1000, 1 MI

PS

LFSR (cont)

e Combinations of LFSR:

- Geffe: z=(a®b)D(-bXc)
where a=LFSR(7), b=LFSR(5), c=LFSR(8)
gives period (2'-1)(2°-1)(2%-1) > 10°

— Still weak: p(z=a) =3/4, p(z=c) =%
— GSM uses "AS" with LFSRs of length 19, 22, 23.
e [.FSRs are fast!

Cryptographic random number
generators

* In cryptography, we want to reduce redundancy
and give minimal information about m given c.

* Use this for random number generation!

* Examples:

— Cyclic encryption: x =E (n. mod m)
where n,_ =n+1
Since n=n,_, x=x. ,and decryption without & 1s hard,
so the sequence 1s (computationally) unpredictable!

- E.g, use DES in OFB mode, use pseudo—random
generator instead of counter

ANSI X9.17 PRNG

e Uses three triple DES encryptions (112-bit key)

— two "random" sources: date/time and seed
— feedback of seed value

— random value Rl. does not reveal seed Vl.+1

Blum Blum Shub

* p, g large primes s.t. p=g=3 (mod 4)
n=pq
s random s.t. ged(n,s)=1

« Output: bit sequence B.

e x,=5s>mod n
for 1=1;1>0;1++) {
x, = (x_)> mod n;
B = x mod 2;
}

BBS is a CSPRBG

 The BBS 1s a cryptographically secure
pseudo—random bit generator (CSPRBG):
it passes the next—bit test:

— Given the first & bits, there 1s no polynomial
algorithm to predict the next bit with probability > %2

e Security based on factorization of n.

