Thwart statistical analysis

Shannon in the 1940's suggested two methods:

Diffusion

- make statistical analysis hard: spread statistical structure of plaintext in long—range statistics of ciphertext
- each plaintext bit affect many ciphertext bits
- ex: permutation + function

Confusion

- make key breaking harder: make relation between ciphertext statistics and key value complex
- ex: complex substitution algorithms

Feistel networks

- Shannons ideas used by Feistel (1970's) basic structure used since then.
- Product cipher alternating substitution and permutation

$$-c = E_k(m) = S_n \circ P_{n-1} \circ \cdots \circ S_2 \circ P_1 \circ S_1(m)$$

- Feistel network
 - split input in two halves L_0, R_0
 - perform *n* rounds:
 - $F(R_i, k_i) \oplus L_i$
 - swap halves
 - end with a swap

Feistel decryption

Same algorithm, but keys in reverse order – works independently of F

```
LE_{16} = RE_{15} = RD_0 = LD_1 = RE_{15}
RE_{16} = LE_{15} \oplus F(RE_{15}, K_{16})
RD_1 = LD_0 \oplus F(RD_0, K_{16})
        = RE_{16} \oplus F(RE_{15}, K_{16})
        = (LE_{15} \oplus F(RE_{15}, K_{16})) \oplus F(RE_{15}, K_{16})
        = LE_{15} \oplus (F(RE_{15}, K_{16}) \oplus F(RE_{15}, K_{16})) = LE_{15} \oplus 0
        = LE_{15}
RD_{16} = LE_0
LD_{16} = RE_0
```

Feistel net parameters

- Block size (64 bits)
 - larger ⇒ greater security (diffusion), but slower
- Key size (128 bits)
 - same relation
- Number of rounds (16)
 - one is too little, more increase security, to a limit
- Subkey generation
 - should be complex
- F should also be complex

Feistel features

- Fast implementation
 - both in software and in hardware
- Can be easy to analyse
 - clear explanation \Rightarrow easier to analyse
 - \Rightarrow safer to trust
 - (DES is not easy to analyse)

Data Encryption Standard (1977)

- Most common variant of a Feistel net
- Encrypts 64-bit blocks with 56-bit key
- Hardware implementations (in USA)
- Known and much analysed algorithm
 - export control on implementations (earlier)
 - unknown criteria for design
 - unknown if trap doors exist

Breaking DES by brute force

- 1977: estimated breakable in 1 day by \$20M machine
- 1981: estimated breakable in 2 days by \$50M machine
- 1997: broken in 96 days by 70,000 machines, testing 7 billion keys/sec
- 1998: less than 3 days by special hardware, \$250K incl design & development
- 1999: in 22h15m, "Deep Crack" + 100,000 machines, testing 245 billion keys/sec

Key generation

- Each round uses different keys K_i based on K (64 bits, discard parity bits \Rightarrow 56 bits)
- PC1 permutes and discards parity bits
- Split in two halves C_0, D_0 (28 bits each)
- Each round: $C_i = LS_i(C_{i-1})$, $D_i = Ls_i(D_{i-1})$
 - LS_i : left circular shift <1,1,2,2,...,2,1> bits
 - $-K_i = PC2(C_iD_i)$

Properties of DES

- Decryption like Feistel (keys in reverse order)
- Symmetry:
 - c = DES(m,k) iff $\underline{c} = DES(\underline{m},\underline{k})$ where \underline{x} is x bitwise negated
 - cuts search space in half
- Weak keys
 - cause involution $(E_k(E_k(m)) = m)$
 - -4 exist for DES: (0,0); (-1,0); (0,-1); (-1,-1)
- Semi-weak key pairs
 - $\text{ if } E_{k1}(E_{k2}(m)) = m$
 - 6 such pairs exist for DES (few enough to check for)

Avalanche effect

- Small changes in m or k give big changes in c, and the changes increase for each round
- Ex: one bit change in plaintext or key:

Change in plaintext			Change in key	
Round Bits differ			Round Bits differ	
	0	1	0	0
	1	6	1	2
	2	21	2	14
	3	35	3	28
	14	26	14	26
	15	29	15	34
	16	34	16	35

Design criteria

- S-box design
 - very careful for DES (some properties in sec. 3.6)
 - can in general be done
 - randomly
 - randomly with testing
 - by careful hand-crafting
 - mathematically
- Number of rounds
 - brute force requires 2⁵⁵ tests
 - for DES with 16 rounds, differential cryptanalysis requires 2^{55.1} operations
 - with 15 rounds, diffrential c.a. would beat brute force

Design criteria (cont)

- Function F
 - Strict Avalanche Criterion
 - any output bit changes with p=½ if a single input bit changes
 - Bit Independence Criterion
 - any two output bits should change independently when a single input bit changes

Strengthening DES

Double DES

$$-c = E_{k2}(E_{k1}(m))$$

- Avoid idempotence $(=E_{k3}(m))$
 - unlikely: 2^{64!} mappings from *M* to *C* possible, but only 2⁵⁶ different keys possible
 - low probability for two keys to give same mapping as one
 - proven impossible in 1992
- Meet-in-the-middle attack

$$-c = E_{k2}(E_{k1}(m)) \implies E_{k1}(m) = D_{k2}(c)$$

- known plaintext, two cases \Rightarrow very likely to find correct key (but requires 2^{56} tests: double to DES)

Triple DES

- Two keys: $c = E_{k1}(D_{k2}(E_{k1}(m)))$
 - cost of known-plaintext attack: 2¹¹²
 - D in the middle for backwards compatibility:
 - $E_{k1}(D_{k1}(E_{k1}(m))) = E_{k1}(m)$
 - very difficult to break
- Three keys: $c = E_{k3}(D_{k2}(E_{k1}(m)))$
 - used e.g. by PGP

Properties of modern ciphers

Modern ciphers: IDEA, Blowfish, RC5, CAST,...

- Variable key length
- Mixed operations (not only xor, not distr/assoc)
- Data dependent rotations instead of S-boxes
- Key dependent rotations, S-boxes
- Variable F, block length, number of rounds
- Operations on both halves

but basically just improvements of Feistel nets!

Usage modes of block ciphers

- ECB: Electronic Code Book mode
 - plaintext split in (64-bit) blocks
 - each block encrypted separately with same key
 - decryption as usual
 - repetitions in plaintext give repetitions in ciphertext
 - blocks can be swapped, repeated, replaced without noticing

Usage modes (cont)

- CBC: Cipher Block Chaining
 - next plaintext block is xored with previous cipher
 - same key for each block
 - decryption: next plaintext xored with prev. cipher
 - first block xored with Initialization Vector (secret)
 - repetitions do not show up in cipher
 - modifications are detected: each cipher block depends on all previous ones

Modes (cont)

- CFB: Cipher Feedback Mode
 - encrypt j bits at a time: stream cipher
 - encrypt a shift register (initially IV), use j most significant bits xor $m \Rightarrow c$
 - next: shift j bits, inserting previous c, continue

Modes (last)

- OFB: Output Feedback Mode
 - do feedback before xor
 - transmission errors do not propagate
 - more vulnerable to message stream modification
 - changing a cipher bit changes the corresponding plaintext bit
 - change both data and checksum bits ⇒ undetected