Thwart statistical analysis

Shannon in the 1940's suggested two methods:

- Diffusion
- make statistical analysis hard: spread statistical structure of plaintext in long-range statistics of ciphertext
- each plaintext bit affect many ciphertext bits
- ex: permutation + function
- Confusion
- make key breaking harder: make relation between ciphertext statistics and key value complex
- ex: complex substitution algorithms

Feistel networks

- Shannons ideas used by Feistel (1970's) - basic structure used since then.
- Product cipher alternating substitution and permutation
$-c=E_{k}(m)=S_{n} \circ P_{n-1} \circ \cdots \circ S_{2} \circ P_{1} \circ S_{1}(m)$
- Feistel network
- split input in two halves L_{0}, R_{0}
- perform n rounds:
- $F\left(R_{i}, k_{i}\right) \oplus L_{i}$
- swap halves
- end with a swap

Feistel decryption

- Same algorithm, but keys in reverse order works independently of F

```
LE
RE 16
RD
    = RE 16 }\oplusF(\mp@subsup{\textrm{RE}}{15}{},\mp@subsup{\textrm{K}}{16}{}
    =(LEE
    = LE E
    = LE 
RD
LD 16}=\mp@subsup{RED}{0}{
```


Feistel net parameters

- Block size (64 bits)
- larger \Rightarrow greater security (diffusion), but slower
- Key size (128 bits)
- same relation
- Number of rounds (16)
- one is too little, more increase security, to a limit
- Subkey generation
- should be complex
- F should also be complex

Feistel features

- Fast implementation
- both in software and in hardware
- Can be easy to analyse
- clear explanation \Rightarrow easier to analyse
\Rightarrow safer to trust
- (DES is not easy to analyse)

Data Encryption Standard (1977)

- Most common variant of a Feistel net
- Encrypts 64-bit blocks with 56-bit key
- Hardware implementations (in USA)
- Known and much analysed algorithm
- export control on implementations (earlier)
- unknown criteria for design
- unknown if trap doors exist

Breaking DES by brute force

- 1977: estimated breakable in 1 day by $\$ 20 \mathrm{M}$ machine
- 1981: estimated breakable in 2 days by $\$ 50 \mathrm{M}$ machine
- 1997: broken in 96 days by 70,000 machines, testing 7 billion keys/sec
- 1998: less than 3 days by special hardware, $\$ 250 \mathrm{~K}$ incl design \& development
- 1999: in 22h15m, "Deep Crack" + 100,000 machines, testing 245 billion keys/sec

Key generation

- Each round uses different keys K_{i} based on K (64 bits, discard parity bits $\Rightarrow 56$ bits)
- PC1 permutes and discards parity bits
- Split in two halves C_{0}, D_{0} (28 bits each)
- Each round: $C_{i}=\operatorname{LS}_{i}\left(C_{i-1}\right), D_{i}=\operatorname{Ls}_{i}\left(D_{i-1}\right)$
- LS ${ }_{i}$: left circular shift $<1,1,2,2, \ldots, 2,2,1>$ bits
$-K_{i}=\mathrm{PC} 2\left(C_{i} D_{i}\right)$

Properties of DES

- Decryption like Feistel (keys in reverse order)
- Symmetry:
$-c=\operatorname{DES}(m, k)$ iff $\underline{c}=\operatorname{DES}(\underline{m}, \underline{k})$ where \underline{x} is x bitwise negated
- cuts search space in half
- Weak keys
- cause involution $\left(E_{k}\left(E_{k}(m)\right)=m\right)$
- 4 exist for DES: $(0,0) ;(-1,0) ;(0,-1) ;(-1,-1)$
- Semi-weak key pairs
- if $E_{k 1}\left(E_{k 2}(m)\right)=m$
- 6 such pairs exist for DES (few enough to check for)

Avalanche effect

- Small changes in m or k give big changes in c, and the changes increase for each round
- Ex: one bit change in plaintext or key:
$\left.\begin{array}{cccc}\begin{array}{l}\text { Change in plaintext } \\ \text { Round }\end{array} \text { Bits differ }\end{array} \quad \begin{array}{l}\text { Change in key } \\ \text { Round Bits differ }\end{array}\right\}$

Design criteria

- S-box design
- very careful for DES (some properties in sec. 3.6)
- can in general be done
- randomly
- randomly with testing
- by careful hand-crafting
- mathematically
- Number of rounds
- brute force requires 2^{55} tests
- for DES with 16 rounds, differential cryptanalysis requires $2^{55.1}$ operations
- with 15 rounds, diffrential c.a. would beat brute force

Design criteria (cont)

- Function F
- Strict Avalanche Criterion
- any output bit changes with $\mathrm{p}=1 / 2$ if a single input bit changes
- Bit Independence Criterion
- any two output bits should change independently when a single input bit changes

Strengthening DES

- Double DES
- $c=E_{k 2}\left(E_{k 1}(m)\right)$
- Avoid idempotence $\left(=E_{k 3}(m)\right)$
- unlikely: $2^{64!}$ mappings from M to C possible, but only 2^{56} different keys possible
- low probability for two keys to give same mapping as one
- proven impossible in 1992
- Meet-in-the-middle attack
$-c=E_{k 2}\left(E_{k 1}(m)\right) \Rightarrow E_{k 1}(m)=D_{k 2}(c)$
- known plaintext, two cases \Rightarrow very likely to find correct key (but requires 2^{56} tests: double to DES)

Triple DES

- Two keys: $c=E_{k 1}\left(D_{k 2}\left(E_{k 1}(m)\right)\right)$
- cost of known-plaintext attack: 2^{112}
- D in the middle for backwards compatibility:
- $E_{k 1}\left(D_{k 1}\left(E_{k 1}(m)\right)\right)=E_{k 1}(m)$
- very difficult to break
- Three keys: $c=E_{k 3}\left(D_{k 2}\left(E_{k 1}(m)\right)\right)$
- used e.g. by PGP

Properties of modern ciphers

Modern ciphers: IDEA, Blowfish, RC5, CAST,...

- Variable key length
- Mixed operations (not only xor, not distr/assoc)
- Data dependent rotations instead of S-boxes
- Key dependent rotations, S-boxes
- Variable F, block length, number of rounds
- Operations on both halves
but basically just improvements of Feistel nets!

Usage modes of block ciphers

- ECB: Electronic Code Book mode
- plaintext split in (64-bit) blocks
- each block encrypted separately with same key
- decryption as usual
- repetitions in plaintext give repetitions in ciphertext
- blocks can be swapped, repeated, replaced without noticing

Usage modes (cont)

- CBC: Cipher Block Chaining
- next plaintext block is xored with previous cipher
- same key for each block
- decryption: next plaintext xored with prev. cipher
- first block xored with Initialization Vector (secret)
- repetitions do not show up in cipher
- modifications are detected: each cipher block depends on all previous ones

Modes (cont)

- CFB: Cipher Feedback Mode
- encrypt j bits at a time: stream cipher
- encrypt a shift register (initially IV), use j most significant bits xor $m \Rightarrow c$
- next: shift j bits, inserting previous c, continue

Modes (last)

- OFB: Output Feedback Mode
- do feedback before xor
- transmission errors do not propagate
- more vulnerable to message stream modification
- changing a cipher bit changes the corresponding plaintext bit
- change both data and checksum bits \Rightarrow undetected

