Cryptology Lab assignment 2: Making and breaking RSA

Vasilij Savin

Information Technology Department
Uppsala University

Spring 2009
Lab deliverables

- Work groups consist of 2-3 students
- Laboration dates (room 1515D):
 - April 28 – 8:00 - 17:00
- Deadline: Monday, May 4th
- Examination sessions: Friday, May 8th, 8:00-12:00
- Task: develop RSA encryption/decryption and try breaking RSA ciphertexts
RSA cypher

- Algorithm consists of 2 main steps:
 - Key generation
 - Encryption/Decryption
- Pre-processing – converting string message to integer
RSA key generation

- Generate two different large primes p, q
- $n := p \times q$
- $\phi(n) = (p - 1) \times (q - 1)$ [Euler's totient]
- Choose random e between $\log_2(n)$ and $\phi(n)$ such that $\gcd(e, \phi(n)) = 1$
- Set $d := \text{inv}(e, \phi(n))$
- Public key is (e, n) and private key is (d, n)
Extended Euclidean algorithm

remainder[0] := n
remainder[1] := e
auxiliary[0] := 0
auxiliary[1] := 1
i := 2
while remainder[i] > 1
 remainder[i] := remainder(remainder[i-2] / remainder[i-1])
 quotient[i] := quotient(remainder[i-2] / remainder[i-1])
 auxiliary[i] := -quotient[i] * auxiliary[i-1] + auxiliary[i-2]
 i := i + 1
inverse := auxiliary[i]
Primality Test (Miller-Rabin)

write \(n - 1 \) as \(2^s \cdot d \) with \(d \) odd
(by factoring powers of 2 from \(n - 1 \))
For \(i \) in \([0 \ldots k] \) (\(k \) - accuracy parameter)
 \(\text{a := random}(2, n - 2) \)
 \(x := \text{a}^d \mod n \)
 if \(x = 1 \) or \(x = n - 1 \) then \text{continue}
 for \(r = 1 \ldots s - 1 \)
 \(x := x^{2^s} \mod n \)
 if \(x = 1 \) then return \text{composite}
 if \(x = n - 1 \) then \text{continue}
 return \text{composite}
return \text{probably prime}
RSA Encryption/Decryption

- Encryption: \(c = m^e \mod n \)
- Decryption: \(m = c^d \mod n \)
- Efficient calculation algorithm
 - Square-and-Multiply
Square-and-Multiply \((x,c,n)\)

\[
z := 1 \\
\text{for } i := \text{len} - 1 \text{ downto } 0 \\
\quad z := \text{pow}(z,2) \mod n \\
\quad \text{if } \text{bit}(c,i) == 1 \text{ then} \\
\quad \quad z := (z \times x) \mod n \\
\text{return } z
\]

\textbf{len} - number of bits in the binary representation of \(c\)

\textbf{bit}(c,i) - returns the \(i\)th bit in \(c\)
Attacking RSA cipher

- Fact: RSA is vulnerable for short m
- Idea of attack: Given the public key (e,n) a brute-force ciphertext-only attack may require to encrypt all possible m to see which one matches the ciphertext.
Attack algorithm

- **Input:**
 - Cipher text c
 - Public key (e,n)
 - k - the number of bits in plain text

- Calculate $i^e \mod n$ for $i = [1..2^{(k/2)}]$. Keep track of which i gives which cipher text. Can use table or map for that.

- Loop over the table and calculate $x = c \cdot \text{inv}(i^e, n) \mod n$, try to find that x as j^e in the table.

- If you can find j^e, then $m = i \cdot j \mod n$