Session2 - solutions

January 23, 2019

In [1]: import numpy as np
 import pandas as pd
 import sklearn.linear_model as skl_lm
 import matplotlib.pyplot as plt

1 2.1 Problem 1.1 using matrix multiplications

Implement the linear regression problems from Exercises 1.1(a), (b), (c), (d) and (e) in Python using matrix multiplications. A matrix

\[
X = \begin{bmatrix}
1 & 2 \\
1 & 3
\end{bmatrix}
\]

can be constructed with numpy as \(X = \text{np.array([[1, 2], [1, 3]]) } \) (Make sure that numpy has been imported. Here it is imported as np). The commands for matrix multiplication and transpose in numpy are \(@ \) or \(\text{np.matmul} \) and \(.T \) or \(\text{np.transpose()} \) respectively. A system of linear equations \(Ax = b \) can be solved using \(\text{np.linalg.solve(A,b)} \). A \(k \times k \) unit matrix can be constructed with \(\text{np.eye(k)} \).

1.1 (a)

In [2]: # Construct the data matrix
 X = np.array([[1, 2], [1, 3]])
 y = np.array([-1, 1])

 # Solve the normal equations
 beta = np.linalg.solve(X.T@X, X.T@y)

 # Print the solution
 print(beta)

 # Compute prediction for \(x = 4 \)
 yhat = beta@np.array([1,4])

 # Print the prediction
 print(yhat)

[-5. 2.]
2.9999999999999964
1.2 (b)

In [3]: # Construct the data matrices
 X = np.array([[1, 2], [1, 3], [1, 4]])
 y = np.array([-1, 1, 2])

 # Compute the solution using the normal equation
 beta = np.linalg.solve(X.T@X, X.T@y)

 # Print the solution
 print(beta)

 # Compute prediction for x = 5
 yhat = beta@np.array([1, 5])

 # Print the prediction
 print(yhat)

([-3.83333333 1.5])
3.666666666666668

1.3 (c)

In [4]: # Construct the data matrices
 # Reshape the array to 2-dim so we can use np.linalg.solve()
 X = np.array([2, 3, 4]).reshape(-1, 1)
 y = np.array([-1, 1, 2]).reshape(-1, 1)

 # Compute the solution
 beta = np.linalg.solve(X.T@X, X.T@y)

 # Print the solution
 print(beta)

 # Compute prediction for x = 5
 yhat = beta@np.array([5])

 # Print the prediction
 print(yhat)

[[0.31034483]]
[1.55172414]

1.4 (d)

In [5]: # Use the solution to the Ridge Regression problem
 # Construct the data matrices
\[X = \text{np.array([[1, 2], [1, 3], [1, 4]])} \]
\[y = \text{np.array([-1, 1, 2])} \]
\[\text{lambda} = 1 \]

\# Compute the solution
\[\text{beta} = \text{np.linalg.solve}(X.T@X + \text{np.eye}(2), X.T@y) \]

\# Print the solution
\[\text{print(beta)} \]

\# Compute prediction for \(x = 5 \)
\[\text{yhat} = \text{beta@np.array([1, 5])} \]

\# Print the prediction
\[\text{print(yhat)} \]

\[-0.53846154 0.46153846\]
1.7692307692307692

\subsection{1.5 (e)}

\textbf{In [6]:} \# e)

\# Construct the data matrices
\[X = \text{np.array([[1, 2], [1, 3], [1, 4]])} \]
\[Y = \text{np.array([[1, 0], [1, 2], [2, -1]])} \]

\# Compute the solution
\[\text{beta} = \text{np.linalg.solve}(X.T@X, X.T@Y) \]

\# Print the solution
\[\text{print(beta)} \]

\[\begin{bmatrix} -3.83333333 & 1.83333333 \\ 1.5 & -0.5 \end{bmatrix} \]

\section{2 2.2 Problem 1.1 using the linear_model.LinearRegression() command}

Implement the linear regression problem from Exercises 1.1(b) and (c) using the command
\text{LinearRegression()} from \text{sklearn.linear_model}.

\subsection{2.1 (b)}

\textbf{In [7]:} \# 2b)

\[X = \text{np.array([2, 3, 4])}.\text{reshape(-1, 1)} \]
\[y = \text{np.array([-1, 1, 2])}.\text{reshape(-1, 1)} \]
Learn the model using the skl_lml() command
model = skl_lml.LinearRegression()
model.fit(X, y)

Print the solution
print('The coefficient beta_1 for X is : ', model.coef_)
print('The offset beta_0 is: ', model.intercept_)

Plot the data and the model
plt.plot(X, y, 'o'
 prediction = model.predict(X)
plt.plot(X, prediction)

The coeficient beta_1 for X is: [[1.5]]
The offset beta_0 is: [-3.83333333]

Out[7]: [matplotlib.lines.Line2D at 0x22c1b988da0]

2.2 (c)

In [8]: # 2c)

Learn the model using the skl_lml() command without intercept
model = skl_lml.LinearRegression(fit_intercept=False)
model.fit(X, y)
Print the solution
print('The coefficient for X is : ', model.coef_)
print('The offset is: ', model.intercept_)

Plot the data and the model
plt.plot(X, y, 'o')
prediction = model.predict(X)
plt.plot(X, prediction)

The coefficient for X is :
[0.31034483]
The offset is: 0.0

Out[8]: [<matplotlib.lines.Line2D at 0x22c1b9c69e8>]

3 2.3 The Auto data set

3.1 (a)

Load the dataset 'Data/Auto.csv'. Familiarize yourself with the dataset using Auto.info(). The dataset:

Description: Gas mileage, horsepower, and other information for 392 vehicles.
Format: A data frame with 392 observations on the following 9 variables.

- mpg: miles per gallon
• cylinders: Number of cylinders between 4 and 8
• displacement: Engine displacement (cu. inches)
• horsepower: Engine horsepower
• weight: Vehicle weight (lbs.)
• acceleration: Time to accelerate from 0 to 60 mph (sec.)
• year: Model year (modulo 100)
• name: Vehicle name

The original data contained 408 observations but 16 observations with missing values were removed.

In [9]: # Set seed to get reproducible results
 np.random.seed(1)

 # a) load library and familiarize with the data
 # The null values are '?' in the dataset. `na_values='?'` recognize the null values.
 # There are null values that will mess up the computation. Easier to drop them by 'dropna'.
 Auto = pd.read_csv('Data/Auto.csv', na_values='?').dropna()
 print(Auto.shape)
 Auto.info()

 (392, 9)
 <class 'pandas.core.frame.DataFrame'>
 Int64Index: 392 entries, 0 to 396
 Data columns (total 9 columns):
 mpg 392 non-null float64
 cylinders 392 non-null int64
 displacement 392 non-null float64
 horsepower 392 non-null float64
 weight 392 non-null int64
 acceleration 392 non-null float64
 year 392 non-null int64
 origin 392 non-null int64
 name 392 non-null object
 dtypes: float64(4), int64(4), object(1)
 memory usage: 30.6+ KB

3.2 (b)

Divide the data set randomly into two approximately equally sized subsets, train and test by generating the random indices using np.random.choice().

In [10]: print(Auto.shape) #(No. of rows, No. of columns)
 trainI = np.random.choice(Auto.shape[0], size=200, replace=False)
 trainIndex = Auto.index.isin(trainI)
 train = Auto.iloc[trainIndex]
 test = Auto.iloc[-trainIndex]

 (392, 9)
3.3 (c)

Perform linear regression with mpg as the output and all other variables except name as input. How well (in terms of root-mean-square-error) does the model perform on test data and training data, respectively?

```python
# Ignore RuntimeWarning: internal gelsd driver lwork query error. Harmless

# Linear regression
model = skl_lm.LinearRegression(fit_intercept = True)  # Add an offset
X_train = train[['cylinders', 'displacement', 'horsepower', 'weight',
                 'acceleration', 'year', 'origin']]
Y_train = train['mpg']
model.fit(X_train, Y_train)
print(model)

# Evaluate on training data
train_predict = model.predict(X_train)
train_RMSE = np.sqrt(np.mean((train_predict - train.mpg)**2))
print('Train RMSE: %2.6f' % train_RMSE)

## Evaluate on test data
X_test = test[['cylinders', 'displacement', 'horsepower', 'weight',
               'acceleration', 'year', 'origin']]
test_predict = model.predict(X_test)
test_RMSE = np.sqrt(np.mean((test_predict - test.mpg)**2))
print('Test RMSE: %2.6f' % test_RMSE)
```

LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1, normalize=False)
Train RMSE: 3.282090
Test RMSE: 3.336977

3.4 (d)

Now, consider the input variable origin. What do the different numbers represent? By running `Auto.origin.sample(30)` we see the 30 samples of the variable and that the input variables is quantitative. Does it really makes sense to treat it as a quantitative input? Use `np.get_dummies()` to split it into dummy variables and do the linear regression again.

```python
# Examples of the origin variable
print('Auto origin:')
print(Auto.origin.sample(30).tolist())

X_train = pd.get_dummies(train, columns=['origin'])
print('X after transformation (origin has been split in three dummy variables):')
print(X_train.head())

# Pick out the input variables
X_train = X_train[['cylinders', 'displacement', 'horsepower', 'weight',
```
'acceleration', 'year', 'origin_1', 'origin_2', 'origin_3']

X_test = pd.get_dummies(test, columns=['origin'])
X_test = X_test[['cylinders', 'displacement', 'horsepower', 'weight',
 'acceleration', 'year', 'origin_1', 'origin_2', 'origin_3']]

look at how sci-kit learn transforms the qualitative input
print(X_train.sample(5))

Repeat c) create and evaluate the model now using encoded categorical data
model1 = skl_lm.LinearRegression()
model1.fit(X_train, Y_train)
print(model1)

Evaluate on training data
train_predict = model1.predict(X_train)
train_RMSE = np.sqrt(np.mean((train_predict - train.mpg)**2))
print('Train RMSE: %2.6f' % train_RMSE)

Evaluate on test data
test_predict = model1.predict(X_test)
test_RMSE = np.sqrt(np.mean((test_predict - test.mpg)**2))
print('Test RMSE: %2.6f' % test_RMSE)

Auto origin:
[1, 1, 1, 1, 1, 2, 1, 3, 1, 3, 2, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3]
X after transformation (origin has been split in three dummy variables):

mpg cylinders displacement horsepower weight acceleration year
0 18.0 8 307.0 130.0 3504 12.0 70
4 17.0 8 302.0 140.0 3449 10.5 70
5 15.0 8 429.0 198.0 4341 10.0 70
6 14.0 8 454.0 220.0 4354 9.0 70
8 14.0 8 455.0 225.0 4425 10.0 70

name origin_1 origin_2 origin_3
0 chevrolet chevelle malibu 1 0 0
4 ford torino 1 0 0
5 ford galaxie 500 1 0 0
6 chevrolet impala 1 0 0
8 pontiac catalina 1 0 0

cylinders displacement horsepower weight acceleration year
98 6 250.0 100.0 3278 18.0 73
285 8 305.0 130.0 3840 15.4 79
236 4 140.0 89.0 2755 15.8 77
213 8 350.0 145.0 4055 12.0 76
373 4 140.0 92.0 2865 16.4 82

origin_1 origin_2 origin_3
3.5 (e)

Try obtain a better RMSE on test data by removing some inputs (explore what happens if you remove, e.g., year, weight and acceleration)

In [13]: # First write a function that takes the prediction model, training and test data # and computes RMSE to simplify the process

 def computeRMSE(model, X, Y):
 Y_predict = model.predict(X)
 RMSE = np.sqrt(np.mean((Y_predict - Y)**2))
 return RMSE

 # The following function streamlines the procedure of testing with dropping # different variables. It is optional. But if you want to skip the function # keep in mind that when you declare e.g. X=X.drop(columns=column_name), # you are manipulating the original X
 def RMSE_with_drop_col(model, X, Y, X_test, Y_test, drop_col):
 # drop_col takes a list of string or strings
 print("Results without the variable \"%s\":" % drop_col)
 X = X.drop(columns=drop_col)
 model.fit(X, Y)
 train_RMSE = computeRMSE(model, X, Y)
 print('Train RMSE %.6f' % train_RMSE)

 X_test = X_test.drop(columns=drop_col)
 test_RMSE = computeRMSE(model, X_test, Y_test)
 print('Test RMSE %.6f' % test_RMSE)
 print()

 # Test output (has not been declared)
 Y_test = test.mpg

 # Remove weight
 model2 = skl_lm.LinearRegression()
 RMSE_with_drop_col(model2, X_train, Y_train, X_test, Y_test, \
 ['weight', 'acceleration'])
Remove year
model3 = skl_lm.LinearRegression()
RMSE_with_drop_col(model3, X_train, Y_train, X_test, Y_test, ['year'])

Remove acceleration
model4 = skl_lm.LinearRegression()
RMSE_with_drop_col(model4, X_train, Y_train, X_test, Y_test, ['acceleration'])

Results without the variable ['weight', 'acceleration']:
Train RMSE 3.749640
Test RMSE 3.835552

Results without the variable ['year']:
Train RMSE 4.171414
Test RMSE 4.097517

Results without the variable ['acceleration']:
Train RMSE 3.264964
Test RMSE 3.312246

3.6 (f)
Try to obtain a better RMSE on test data by adding some transformations of inputs, such as $\log(x)$, \sqrt{x}, x_1x_2 etc.

In [14]: # A small function to simplify the process
def RMSE_with_cols(model, X, Y, cols):
 print("RMSE with the variables '%s':" % cols)
 X = X[cols]
 model.fit(X, Y)
 RMSE = computeRMSE(model, X, Y)
 print('RMSE %2.6f' % RMSE)

horsepower*acceleration
print('comp = horsepower * acceleration')
model = skl_lm.LinearRegression()
X_train_copy = X_train.copy() # A hard copy to avoid manipulating the original X
X_train_copy['comp'] = X_train_copy.horsepower * X_train_copy.acceleration
cols = ['cylinders', 'displacement','comp', 'origin_1', 'origin_2', 'origin_3']
RMSE_with_cols(model, X_train_copy, Y_train, cols)

print()

sqrt(horsepower) and weight^2
print('sqrt(horsepower) and weight^2')
model = skl_lm.LinearRegression()
\[
\begin{align*}
X_{\text{train}}_{\text{copy}} &= X_{\text{train}}.\text{copy()} \\
X_{\text{train}}_{\text{copy}}[\text{'sqrt_horsepower']} &= \text{np.sqrt}(X_{\text{train}}_{\text{copy}}.\text{horsepower}) \\
X_{\text{train}}_{\text{copy}}[\text{'weight_sqr']} &= X_{\text{train}}_{\text{copy}}.\text{weight}^2 \\
cols &= [\text{'cylinders'}, \text{'displacement'}, \text{'sqrt_horsepower'}, \text{'weight_sqr'}, \text{'origin_1'}, \text{'origin_2'}, \text{'origin_3']} \\
\text{RMSE} &\text{with}_{\text{cols}}(\text{model}, X_{\text{train}}_{\text{copy}}, Y_{\text{train}}, \text{cols})
\end{align*}
\]

comp = horsepower * acceleration
RMSE with the variables ['cylinders', 'displacement', 'comp', 'origin_1', 'origin_2', 'origin_3']
RMSE 4.187345

\[
\begin{align*}
\text{sqrt_horsepower}\text{ and weight}^2 \\
\text{RMSE} &\text{with}_{\text{cols}}(\text{model}, X_{\text{train}}_{\text{copy}}, Y_{\text{train}}, \text{cols})
\end{align*}
\]

RMSE 4.182440

4 2.4 Nonlinear transformations of input variables

Start by running the following code to generate your training data

\[
\begin{align*}
\text{np}\.\text{random}\.\text{seed}(1) \\
x_{\text{train}} &= \text{np}\.\text{random}\.\text{uniform}(0, 10, 100) \\
y_{\text{train}} &= .4 - .6 * x_{\text{train}} + 3. * \text{np}\.\text{sin}(x_{\text{train}} - 1.2) + \text{np}\.\text{random}\.\text{normal}(0, 0.1, 100)
\end{align*}
\]

In [15]: np.random.seed(1)
 x_train = np.random.uniform(0, 10, 100)
 y_train = .4 - .6 * x_train + 3. * np.sin(x_train - 1.2) + np.random.normal(0, 0.1, 100)

4.1 (a)

Plot the training output y_train versus the training input x_train.

In [16]: # a) Plot
 plt.plot(x_train, y_train, 'o')
 plt.xlabel('Input')
 plt.ylabel('Output')

Out[16]: Text(0,0.5,'Output')
4.2 (b)

Learn a model on the form
\[y = a + bx + csin(x + \phi) + \epsilon, \quad \epsilon \sim \mathcal{N}(0, 1^2) \] \hspace{1cm} (2.1)

where all parameters \(a, b, c \) and \(\phi \) are to be learned from the training data \(x_{\text{train}} \) and \(y_{\text{train}} \). Refrain from using the \texttt{linear_model()} command, but implement the normal equations yourself as in problem 2.1. Hint: Even though (2.1) is not a linear regression model, you can use the fact that \(csin(x + \phi) = ccos(\phi)sin(x) + csin(\phi)cos(x) \) to transform it into one.

In [17]: # b) Do linear regression

 X_train = np.column_stack([np.repeat(1, 100), x_train, np.cos(x_train), np.sin(x_train)])

 y_train = np.array(y_train).reshape(-1, 1)

 beta = np.linalg.solve(X_train.T @ X_train, X_train.T @ y_train)

 beta

 Out[17]: array([[0.42117995],
 [-0.60266039],
 [-2.78869453],
 [1.08808499]])

4.3 (c)

Construct 100 test inputs \(x_{\text{test}} \) in the span from 0 to 10 by using the \texttt{np.linspace()} function. Predict the outputs corresponding to these inputs and plot them together with the training data.
In [18]: # c) Do prediction
 x_test = np.random.uniform(0, 10, 100)
 X_test = np.column_stack([np.repeat(1, 100), x_test, np.cos(x_test), np.sin(x_test)])
 yhat = X_test@beta
 plt.plot(x_test, yhat, 'o')
 plt.show()

4.4 (d)

Do a least squares fit by instead using the `linear_model()` function in Python. Check that you get the same estimates as in (b).

In [19]: # d) Linear regression
 model = skl_lm.LinearRegression()
 model.fit(X_train, y_train)
 prediction = model.predict(X_test)

 plt.plot(x_train, y_train, 'o', label='data')
 plt.plot(x_test, yhat, 'o', label='Lin. Reg. (normal equations)')
 plt.plot(x_test, prediction, 'o', label='Lin. Reg (built-in function)')

 plt.legend()
 plt.show()
5 2.5 Regularization

In this exercise we will apply Ridge regression and Lasso for fitting a polynomial to a scalar data set. We will have a setting where we first generate synthetic training data from

\[y = x^3 + 2x^2 + 6 + \epsilon, \quad (2.2) \]

and later try to learn model for the data.

5.1 (a)

Write a function that implements the polynomial (2.2), i.e., takes \(x \) as argument and returns \(x^3 + 2x^2 + 6 \).

In [20]: # a)
def f(x):
 return x**3 + 2*x**2 + 6

5.2 (b)

Use `np.random.seed()` to set the random seed. Use the function `np.linspace()` to construct a vector \(x \) with \(n = 12 \) elements equally spaced from \(-2.3\) to \(1\). Then use your function from (a) to construct a vector \(y = [y_1, ..., y_n]^T \) with 12 elements, where \(y = x^3 + 2x^2 + 6 + \epsilon \), with \(\epsilon \sim \mathcal{N}(0, \infty) \). This is our training data.
5.3 (c)

Plot the training data $T = \{x_i, y_i\}_{i=1}^{12}$ together with the "true" function.

5.4 (d)

Fit a straight line to the data with y as output and x as input and plot the predicted output \hat{y}, for densely spaced $x*$ values between -2.3 and 1. Plot these predictions in the same plot window.
prediction = model.predict(x_test.reshape(-1,1))

Plots
plt.plot(x_train, y_train, 'o', label='data')
plt.plot(x_test, y_test, label='true function')
plt.plot(x_test, prediction, label='linear regression')
plt.legend()
plt.show()

5.5 (e)
Fit a 11th degree polynomial to the data with linear regression. Plot the corresponding predictions.

In [24]: # e)
 # Add X^n, n=1, 2...11, to x_train and x_test
 x_train_ext = x_train.reshape(-1,1)
 x_test_ext = x_test.reshape(-1,1)

 for i in range(10):
 x_train_ext = np.column_stack([x_train_ext, x_train.reshape(-1,1)**(i+2)])
 x_test_ext = np.column_stack([x_test_ext, x_test.reshape(-1,1)**(i+2)])

 # verify
 print(x_train_ext[0,:])
 print(x_test_ext[0,:])
5.6 (f)

Use the function `sklearn.linear_model.Ridge` and `sklearn.linear_model.Lasso` to fit a 11th degree polynomial. Also inspect the estimated coefficients. Try different values of penalty term α. What do you observe?

In [26]: # f)
 # With Ridge
model = skl_lm.Ridge(alpha=1)
model.fit(x_train_ext, y_train)
print('Model coefficients: ')
print(model.coef_)

prediction = model.predict(x_test_ext)

Plots
plt.plot(x_train, y_train, 'o', label='data')
plt.plot(x_test, y_test, label='true function')
plt.plot(x_test, prediction, label='linear regression with Ridge')

plt.legend()
plt.show()

Model coefficients:
[0.24047501 0.75707966 -0.0506247 0.79748062 -0.04197945 0.50957368
 0.38463181 0.01286643 0.56377651 0.47223915 0.0970541]

In [27]: # With Lasso
model = skl_lm.Lasso(alpha=0.1)
model.fit(x_train_ext, y_train)
print('Model coefficients: ')
print(model.coef_)
prediction = model.predict(x_test_ext)

Plots
plt.plot(x_train, y_train, 'o', label='data')
plt.plot(x_test, y_test, label='true function')
plt.plot(x_test, prediction, label='linear regression with Lasso')
plt.legend()
plt.show()

Model coefficients:
[1.75687912e-01 2.20069018e+00 0.00000000e+00 1.99502387e-01
 4.20853300e-01 0.00000000e+00 1.85824779e-02 3.57481443e-03
 -1.73710840e-03 1.49116638e-03 -4.59040376e-04]

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\linear_model\coordinate_descent.py:491: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Fitting data with very small alpha may cause precision problems.
 ConvergenceWarning)