Spectral Analysis of Signals

Instructors

<table>
<thead>
<tr>
<th>Name</th>
<th>Room</th>
<th>Phone</th>
<th>Email</th>
<th>Responsibilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Petre Stoica</td>
<td>2-135</td>
<td>018/4717619</td>
<td>ps@it.uu.se</td>
<td>Lectures, examination</td>
</tr>
<tr>
<td>Richard Abrahamsson</td>
<td>2-139</td>
<td>018/4713396</td>
<td>ra@it.uu.se</td>
<td>Computer labs and homeworks</td>
</tr>
<tr>
<td>Niclas Sandgren</td>
<td>2-137</td>
<td>018/4713392</td>
<td>ns@it.uu.se</td>
<td>Computer labs and homeworks</td>
</tr>
<tr>
<td>Yngve Selén</td>
<td>2-138</td>
<td>018/4713393</td>
<td>ys@it.uu.se</td>
<td>Computer labs and homeworks</td>
</tr>
</tbody>
</table>

Course Literature

or

(an errata is available for download at the course homepage (see below))

Course Homepage

http://www.it.uu.se/edu/course/homepage/spekana/ht06

Lectures

1. Spectral Analysis – A Tutorial Introduction
2. Selected Applications (presented by instructors)
3. Basic Definitions and the Spectral Analysis Problem Chap. 1
4. Periodogram and Correlogram Methods Sect. 2.1 – 2.3
5. Improved Periodogram Based Methods Sect. 2.4
6. Parametric Methods for Rational Spectra Chapt. 3
7. Parametric Methods for Line Spectra Sect. 4.1 – 4.3 & 4.7
8. Filter Bank Methods Chap. 5
9. Spatial Methods Sect. 6.1 – 6.3
10. Selected Applications (presented by students)

The OH transparencies used in Lecture 3 - Lecture 9 can be found at:
http://www.prenhall.com/stoica

As a general rule, you need to read only the material in the textbook strictly related to the presentations in the lectures. You are not required to study the more advanced parts of the textbook (such as technical statistical analyses, complements and topics that are not discussed during the lectures). However, the textbook will be useful to understand some topics which are only briefly addressed in the class. The whole book may also become a useful reference after graduation, as Spectral Analysis is a universal tool in engineering applications and elsewhere.
Homework Assignments

The homeworks will be based on the exercises specified below. For each homework you will receive additional instructions along with some hints. This information will be made available via the course homepage (see the first page of this syllabus).

We recommend that you start immediately after the topic has been dealt with in the class. You will have at least one week for each homework (see below for exact dates).

In the solutions you are expected to clearly state your conclusions (e.g. do not only claim that something works better/worse than something else, also explain how you came to this conclusion and how the results relate to the theory). The solutions should be put into the box marked Inlämningsuppgifter SA06 on the second floor in house 2.

Matlab files for the exercises can be found at http://www.prenhall.com/stoica/ or, alternatively, they can be downloaded from the course homepage.

Below, the exercise numbers are written for the old book first (from 1997), and then for the new 2005 book as “old/new” (see Course Literature above).

HW 1. Periodogram Methods
 Deadline: TBA

HW 2. Rational Parametric Methods
 Deadline: TBA
 Exercise C3.18/C3.20: AR and ARMA Estimators applied to Measured Data

HW 3. Rational Parametric Methods for Line Spectra
 Deadline: TBA

HW 4. Parametric Methods for Line Spectra
 Deadline: TBA

HW 5. Spatial Methods
 Deadline: TBA
Lab Assignments

Similarly to the homeworks the computer-lab assignments are based on exercises from the book (see listing below). Further information about the computer exercises will be handed out before each lab.

Solutions should be reported to the lab supervisors at the end of each lab session. Please come well prepared for the labs (e.g. study your notes and/or read about the methods in advance).

Matlab files for the exercises below can be found at http://www.prenhall.com/stoica/ or, alternatively, they can be downloaded from the course homepage.

An UpUnet-S (the university computer network for students) account is required for the PC-labs. Information about UpUnet-S can be found at http://www.student.uu.se/upunets/

Note that passing all 5 labs is a pre-requirement for passing the course.

Below, the exercise numbers are written for the old book first (from 1997), and then for the new 2005 book as “old/new” (see Course Literature above).

Lab 1. Periodogram Methods

Exercise C2.18/C2.20: Resolution and Leakage Properties of the Periodogram.

Lab 2. Parametric Methods for Rational Spectra

Exercise C3.16/C3.17: Comparison of AR, ARMA and Periodogram Methods for ARMA Signals

Lab 3. Parametric Methods for Line Spectra

Lab 4. Filter Bank Methods

Exercise C5.13/C5.13: The Capon Method

Lab 5. Spatial Methods

Examination

Your final grade is based on your solutions to the 5 homeworks. For each homework assignment you may get a maximum of 20 points. Hence the total maximum is 100 points.

Since the examination is based on the homeworks, discussing the solutions to the homework assignments with your colleagues or anybody else is strictly forbidden. Note that in grading the homework solutions we will put an emphasis on your interpretations of the results. Also note that there will be a session of 3 hours in October (exact date to be determined) during which you will be expected to be able to present your solutions to any of the 5 homeworks. During this session your presence is mandatory (otherwise you will fail the course). We will randomly select 5 students to present each solution to the 5 homeworks. Hence, since you may be selected to present any of the solutions, you should have slides/transparencies prepared for each of them. Each presentation (including discussions) will last 30 minutes. After this session we will collect all presentations.

During the last lecture, L10, up to 4 students may choose to present some applications of spectral analysis. Each presentation will last 25 minutes (including discussions) and its topic can be selected by the student or suggested by us. For each presentation you may get a maximum of 20 points.

Grading

<table>
<thead>
<tr>
<th>Points</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤40</td>
<td>Fail</td>
</tr>
<tr>
<td>41 – 70</td>
<td>3</td>
</tr>
<tr>
<td>71 – 90</td>
<td>4</td>
</tr>
<tr>
<td>≥91</td>
<td>5</td>
</tr>
</tbody>
</table>