Semantik och Principer för
Programmeringsspråk

Examination
5 June 2002, 3pm–8pm

Faron Møller
UU/CSD

- Please give solutions in English if possible. If you are particularly uncomfortable with English, you may of course use Swedish.

- Write your name on **every** page!

- The maximum number of points is given with each problem. There are 60 points possible in total; these are added to the points earned on the exercises, to give a total score out of 80. To pass, you must score 36 out of 80. To get VG, you must score 56 out of 80.

 (Unless you have prior credit for the exercises, in which case you must score 27 out of 60 on the exam to pass, and 42 out of 60 to get a VG.)

 Good Luck!

1. Prove the following:

 If $\langle \text{while } b \text{ do } c, \sigma \rangle \rightarrow \sigma'$ then $\langle b, \sigma' \rangle \rightarrow \text{false.}$

 [5 marks]

2. Consider adding **double assignment** as a command in Imp:

 Syntax: $(x, y) := (a_0, a_1)$

 Informal Semantics: evaluate both expressions a_0 and a_1 **before** assigning their values to x and y, respectively.

 (a) Give operational and denotational definitions for this new command. [5 marks]

 (b) Give an example demonstrating that, in general, $(x, y) := (a_0, a_1)$ is different from $x := a_0 ; y := a_1$. [3 marks]
3. Imagine introducing the \texttt{break} command into \texttt{Imp}, whose intended behaviour is to immediately abort execution of the smallest enclosing \texttt{while}-loop (if any) and to return control to the following commands (if any).

Thus for example, using this new command, the command \texttt{while }\texttt{b }\texttt{do }\texttt{c} is equivalent to

\texttt{while true do if b then c else break}

The syntax of the extended language is

\[c ::= \text{skip} \mid \text{break} \mid x := a \mid c_0; c_1 \mid \text{if } b \text{ then } c_0 \text{ else } c_1 \mid \text{while } b \text{ do } c. \]

In order to give operational semantic rules, it no longer suffices to have a transition relation of the form \(\langle c, \sigma \rangle \rightarrow \sigma' \). It is necessary to record whether or not a \texttt{break} has been encountered. To do this we use a transition relation of the form \(\langle c, \sigma \rangle \rightarrow \langle \sigma', t \rangle \), with the following interpretation:

- \(\langle c, \sigma \rangle \rightarrow \langle \sigma', \text{true} \rangle \) means that the execution of \(c \) in state \(\sigma \) terminates in state \(\sigma' \) by encountering a \texttt{break} command at the topmost level (not inside the body of a while-loop).

- \(\langle c, \sigma \rangle \rightarrow \langle \sigma', \text{false} \rangle \) means that the execution of \(c \) in state \(\sigma \) terminates in state \(\sigma' \) without encountering a \texttt{break} command at the topmost level.

Thus for example, the rules for \texttt{skip} and \texttt{break} would be as follows.

\[\langle \text{skip}, \sigma \rangle \rightarrow \langle \sigma, \text{false} \rangle \quad \text{and} \quad \langle \text{break}, \sigma \rangle \rightarrow \langle \sigma, \text{true} \rangle. \]

(a) Give an operational semantic definition for commands in this language. \hspace{1cm} [8 marks]

(b) Give a denotational semantic definition for commands in this language. \hspace{1cm} [8 marks]
4. A function $f : D \to E$ between $cpos (D, \sqsubseteq_D)$ and (E, \sqsubseteq_E) is continuous iff

 (i) f is monotonic; \textit{and}

 (ii) f “preserves lubs of chains”: for all chains $d_0 \sqsubseteq_D d_1 \sqsubseteq_D d_2 \sqsubseteq_D \cdots$ in D,

 $$f\left(\bigcup_{n \in \omega} d_n \right) = \bigcup_{n \in \omega} f(d_n).$$

 Prove that the first clause is redundant, that is, prove the following: \hspace{1cm} [5 marks]

 If f preserves lubs of chains then f is monotonic.

5. The following is a Pascal data type which represents a person’s name (as a string of k characters), as well as \textit{either} a salary if she/he is employed \textit{or} an indication as to whether that person has a disability:

   ```pascal
   record
       name : array [1..k] of char;
     case employed : boolean of
         true : ( salary : integer );
         false : ( disabled : boolean )
   end
   ```

 Give an appropriate semantic domain for representing objects of this type.
6. Consider the following function definition contained in a Rec declaration d:

$$\text{test}(x,y,z) = \text{if } x \text{ then } y \text{ else } z$$

Using the Call-by-Value Semantics, the Rec term $\text{test}(t_0, t_1, t_2)$ behaves differently in general from the term $\text{if } t_0 \text{ then } t_1 \text{ else } t_2$, but these two terms are indistinguishable using the Call-by-Name Semantics. Prove these facts as follows.

(a) Prove that $\text{if } \left[\text{test}(t_0, t_1, t_2) \rightarrow^{d_{\text{va}}} n \right] \text{ then } \left[\text{if } t_0 \text{ then } t_1 \text{ else } t_2 \rightarrow^{d_{\text{na}}} n \right]$. [4 marks]

(b) Give an example showing that we can have $\left[\text{if } t_0 \text{ then } t_1 \text{ else } t_2 \rightarrow^{d_{\text{na}}} n \right]$ without having $\left[\text{test}(t_0, t_1, t_2) \rightarrow^{d_{\text{va}}} n \right]$. [4 marks]

(c) Prove that $\text{test}(t_0, t_1, t_2) \rightarrow^{d_{\text{na}}} n \iff \left[\text{if } t_0 \text{ then } t_1 \text{ else } t_2 \rightarrow^{d_{\text{na}}} n \right]$. [4 marks]

7. Consider the following two statements about a computer: [7 marks]

(a) “The computer consists of three parts: a CPU, a memory unit, and a bus for communication with the environment.”

(b) “The emergency button can be pushed; this will halt the computer, which will then not do anything further.”

One of these statements can be expressed in the modal logic M; express it.

The other statement cannot be formalised in M; explain why not.

8. Will Sweden make it past the first round of the World Cup? [1 mark]