Instrumental Variable Methods (IVM) (Ch. 8)

Main Idea: Modify the LS method to be consistent also for correlated disturbances.

The least squares estimate
\[
\hat{\theta} = \left[\frac{1}{N} \sum_{t=1}^{N} \varphi(t)\varphi^T(t) \right]^{-1} \left[\frac{1}{N} \sum_{t=1}^{N} \varphi(t)y(t) \right]
\]
has the estimation error (when \(N \to \infty \))
\[
\hat{\theta} - \theta_0 = E \left[\varphi(t)\varphi^T(t) \right]^{-1} E \left[\varphi(t)\varepsilon(t) \right]
\]
Consequently, for \(\hat{\theta} - \theta_0 = 0 \) to hold, we must have
\[
E \left[\varphi(t)\varepsilon(t) \right] = 0,
\]
which is satisfied if, and essentially only if, \(\varepsilon(t) \) is white noise. Hence, the least squares estimate is not consistent for correlated noise sources.

Consider the ARX model,
\[
A(q^{-1})y(t) = B(q^{-1})u(t) + \varepsilon(t)
\]
or, equivalently,
\[
y(t) = \varphi^T(t)\theta + \varepsilon(t)
\]
where \(\varepsilon(t) \) is the equation error \((y(t) - y_m(t)) \), and
\[
\varphi(t) = [y(t - 1) \ldots - y(t - n_a)u(t - 1) \ldots u(t - n_b)]^T
\]
\[
\theta = [a_1 \ldots a_{n_a} b_1 \ldots b_{n_b}]^T
\]

Cure:
- PEM (last lecture). Model the noise.
 - Applicable to general model structures.
 - Generally very good properties of the estimates.
 - Computationally quite demanding.
- Instrumental variable methods (IVM). Do not model the noise.
 - Retain the simple LS structure.
 - Simple and computationally efficient approach.
 - Consistent for correlated noise.
 - Less robust and statistically less effective than PEM.
The IV method

Introduce a vector \(z(t) \in \mathbb{R}^{n_t} \) with entries uncorrelated with \(\varepsilon(t) \). Then (for large values of \(N \))

\[
0 = \frac{1}{N} \sum_{t=1}^{N} z(t) \varepsilon(t) - \frac{1}{N} \sum_{t=1}^{N} z(t) [y(t) - \varphi^T(t)\theta]
\]

which yields (if the inverse exists)

\[
\dot{\theta} = \frac{1}{N} \sum_{t=1}^{N} z(t) \varphi^T(t) \left(\frac{1}{N} \sum_{t=1}^{N} z(t)\varepsilon(t) \right)^{-1}
\]

The elements of \(z(t) \) are usually called the **instruments**. Note that if \(z(t) = \varphi(t) \), the IV estimate reduces to the LS estimate.

Choice of Instruments

Obviously, the choice of instruments is very important. They have to be chosen

(i) such that \(z(t) \) is uncorrelated with \(\varepsilon(t) \) \(\langle E z(t)\varepsilon(t) \rangle = 0 \), and

(ii) such that the matrix

\[
\frac{1}{N} \sum_{t=1}^{N} z(t)\varphi^T(t) \rightarrow E z(t)\varphi^T(t)
\]

has full rank. In other words it is essential that \(z(t) \) and \(\varphi(t) \) are correlated.

Extended IV methods

Recall that the basic IV estimate is derived from

\[
\min_{\theta} \sum_{t=1}^{N} z(t)\varepsilon(t)^2
\]

More flexibility is obtained if the instrument vector \(z(t) \) is augmented to dimension \(n_z \) \((n_z \geq n_\theta) \), and if we allow for a weighting and a prefiltering of the residuals by some stable filter \(F(q^{-1}) \), i.e.,

\[
\min_{\theta} \sum_{t=1}^{N} z(t)F(q^{-1})\varepsilon(t)^2
\]

where \(||x||_Q^2 = x^TQx \) and \(Q \) is a positive definite weighting matrix.
Inserting

\[z(t) = y(t) - \varphi^T(t)\theta \]

yields the so-called extended IV method

\[
\hat{\theta} = \arg \min_{\theta} \left\{ \frac{1}{N} \sum_{t=1}^{N} z(t) F(q^{-1}) \varphi(t) \right\}^2
\]

When \(F(q^{-1}) = 1 \) and \(Q = I \), the basic IV method is obtained.

Introduce

\[
R_N = \frac{1}{N} \sum_{t=1}^{N} z(t) F(q^{-1}) \varphi(t)
\]

\[
r_N = \frac{1}{N} \sum_{t=1}^{N} z(t) F(q^{-1}) y(t)
\]

Then

\[
\hat{\theta} = \arg \min_{\theta} \left\{ R_N \theta - r_N \right\}_Q^2
\]

\[
= \arg \min_{\theta} \left\{ R_N \theta - r_N \right\}^T Q (R_N \theta - r_N)
\]

\[
= \left[R_N^T Q R_N \right]^{-1} R_N^T Q r_N
\]

Note that due to numerical instability the algorithm should not be implemented in this manner.

Rem: Notice that \(R_N \) is in general not a square matrix.

Assumptions

(i) The system is strictly causal and asymptotically stable.

(ii) The input is persistently exciting of a sufficiently high order.

(iii) The disturbance is a stationary stochastic process with rational spectral density,

\[z(t) = H(q^{-1}) r(t), \quad E r^2(t) - \lambda^2 \]

(iv) The input and the disturbance are independent.

(v) The model and the true system have the same transfer function if and only if \(\theta = \theta_0 \) (uniqueness).

(vi) The instruments and the disturbances are uncorrelated.

Consider the system

\[y(t) = \varphi^T(t) \theta_0 + \varepsilon(t) \]

Then

\[
r_N = \frac{1}{N} \sum_{t=1}^{N} z(t) F(q^{-1}) y(t)
\]

\[
= \frac{1}{N} \sum_{t=1}^{N} z(t) F(q^{-1}) \varphi(t) \theta_0 + \frac{1}{N} \sum_{t=1}^{N} z(t) F(q^{-1}) z(t)
\]

\[
= R_N \theta_0 + q_N
\]
Thus
\[\hat{\theta} - \theta_0 = [R_N^T Q R_N]^{-1} R_N^T Q q_N - [R^T Q R]^{-1} R^T Q q \]
where
\[R \triangleq \lim_{N \to \infty} R_N = E [z(t)F(q^{-1})\varphi^T(t)] \]
\[q \triangleq \lim_{N \to \infty} q_N = E [z(t)F(q^{-1})\varepsilon(t)] \]
Therefore, the IV estimate will be consistent \((\lim_{N \to \infty} \hat{\theta} - \theta_0)\) if
(i) \(R \) has full rank (inaccurate estimates will be obtained if \(R \) is nearly rank deficient),
(ii) \(E [z(t)F(q^{-1})\varepsilon(t)] = 0. \)

Furthermore, the parameter estimation errors are asymptotically Gaussian distributed with zero mean and variance \(P_{IV} \)

\[\sqrt{N}(\hat{\theta} - \theta_0) \to N(0, P_{IV}) \]
where
\[P_{IV} = \lambda^2 (R^T Q R)^{-1} R^T Q S Q R (R^T Q R)^{-1} \]
where
\[S = E [F(q^{-1})H(q^{-1})\varepsilon(t)] [F(q^{-1})H(q^{-1})\varepsilon(t)]^T \]

Rem: For multivariable systems \(S \) must be modified.

Optimal IVM

The main usefulness in being able to express \(P_{IV} \) lies in the comparison to \(P_{PEM} \) (recall that PEM is efficient for Gaussian disturbances). An “appropriate” choice of parameters leads to the optimal IVM. For example, (single output)

\[z(t) = H^{-1}(q^{-1})\tilde{\varphi}(t) \]
\[F(q^{-1}) = H^{-1}(q^{-1}) \]
\[Q = I \]

where \(\tilde{\varphi}(t) \) is the noise-free part of \(\varphi(t) \). Then,

\[P_{IV}^{opt} = \lambda^2 \left\{ E [H(q^{-1})\tilde{\varphi}(t)H(q^{-1})\tilde{\varphi}^T(t)] \right\}^{-1} \]

and \(P_{IV} \geq P_{IV}^{opt} \geq P_{PEM} \).

Approximative implementation of the optimal IVM

Note that the optimal instruments can not be implemented as it requires knowledge of the undisturbed output, the noise variance \((\lambda^2)\), and the shaping filter \(H(q^{-1}) \). Fortunately, it is possible to find an approximate (iterative) implementations.

One way is the following four-step IV estimator:

(i) Use the least-squares estimate of

\[y(t) = \varphi^T(t)\tilde{\theta} \quad \Rightarrow \quad \tilde{\theta}_N^{(i)} \]
(ii) Use the IV estimator with the instruments
\[z^{(1)}(t) = \begin{bmatrix} -x^{(1)}(t-1) & \ldots & -x^{(1)}(t-n) & u(t-1) & \ldots & u(t-n_1) \end{bmatrix} \]
where \(x^{(1)}_t = \frac{\hat{\Phi}^{(1)}(q^{-1})}{\hat{A}_N^{(1)}(q^{-1})} u_t \Rightarrow \hat{\theta}^{(2)}_N. \)

(iii) Estimate \(H(q^{-1}) \). Postulate an AR model, and use the least-squares method
\[L(q^{-1})\hat{w}^{(2)}(t) = e(t), \Rightarrow \hat{L}_N(q^{-1}) \]
where \(\hat{w}^{(2)}_t = \hat{A}^{(2)}_N(q^{-1}) y(t) - \hat{B}^{(2)}_N(q^{-1}) u(t) \)

(iv) Use the IV estimator with \(F(q^{-1}) = \hat{L}(q^{-1}) \), and
\[z^{(2)}(t) = \hat{L}_N(q^{-1})[\begin{bmatrix} -x^{(2)}(t-1) & \ldots & -x^{(2)}(t-n) & u(t-1) & \ldots & u(t-n_1) \end{bmatrix}] \]

Summary IVM

- The implementation of the PEM is computationally complex for many model structures.
- The computationally convenient LS method is normally biased for such model structures (i.e. for correlated disturbances).
- The IV method uses instruments that are uncorrelated with the disturbances to make the “LS-like” solution consistent.
- The parameters obtained by the IV method are thus consistent (if the instruments are chosen with care) but has a (slightly) higher variance than the PEM estimates.
- Approximately optimal IV methods can be implemented in an iterative manner to achieve the lowest possible variance of the IV estimates.