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1 The Kalman Predictor Problem

Consider the state space system

x(n + 1) = F (n)x(n) + v(n) (1.1)
y(n) = H(n)x(n) + e(n) (1.2)

where

x(n) =

 x1(n)
...

xN (n)

 v(n) =

 v1(n)
...

vN (n)



y(n) =

 y1(n)
...

yP (n)

 e(n) =

 e1(n)
...

eP (n)



F(n) =

 f11(n) · · · f1N (n)
...

. . .
...

fN1(n) · · · fNN (n)

 N ×N transition matrix

H(n)=

 h11(n) · · · h1N (n)
...

. . .
...

hP1(n) · · · hPN (n)

 P ×N measurement matrix

v(n) is a zero mean, white stochastic process
with

E (v(n)) = 0

E
(
v(m)vH(n)

)
=

{
Rv m = n
0 m 6= n

e(n) is a zero mean, white stochastic process
with

E (e(n)) = 0

E
(
e(m)eH(n)

)
=

{
Re m = n
0 m 6= n

v(n) & e(n) are independent stochastic processes with

E
(
v(m)eH(n)

)
= 0 ∀ m, n.

Let us begin by looking at the subspaces that the elements of the state space vector and
the output vector lie in. It is easily seen that

1. The state space vector x(n) is a column vector of the state space N -tuple
X(n) = {x1(n), x2(n), . . . xN (n)}.

2. The state space N -tuple X(n) lies in the subspace Vn−1 = Sp {V(1), V(2), . . . , V(n− 1)}
spanned by the N -tuples V(m) = {v1(m), . . . vN (m)} for m = 1, 2, . . . , n− 1.
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3. The output vector y(n) is a column vector of the output P -tuple
Y(n) = {y1(n), y2(n), . . . yP (n)}.

4. The output P -tuple Y(n) lies in the subspace Vn−1
⊕

Sp {E(n)}, where E(n) is
the N -tuple E(n) = {e1(n), e2(n), . . . eP (n)}.

Note that the only measurable signal in the state space system is the output signal y(n).
Given the above state space system the Kalman predictor is the linear least squares
estimator that estimates each random vector xi(n) of the state space N -tuple X(n) =
{x1(n), x2(n), . . . xN (n)} as the linear sum of the sequence of output P -tuples
Y(1), Y(2), . . . , Y(n− 1),

x̂i(n) =
n−1∑
m=1

Y(m)Ak,m(n),

that minimizes the squared error

‖xi(n)− x̂i(n)‖2 = E ((xi(n)− x̂i(n)) (xi(n)− x̂i(n))∗) .

This is a familiar minimization problem from the notes on The Geometric Tools of
Hilbert Spaces with a familiar solution. The solution is that x̂i(n) is the projection of
xi(n) onto the subspace Yn−1 = Sp {Y(1), Y(2), . . . , Y(n− 1)}, which we denote by
x̂i(n/Yn−1). Note that the dimension of the subspace Yn−1 increases with n. However,
as x̂i(n/Yn−1) is estimated for each time instance n it is desirable to obtain a recursive
evaluation of this projection.

2 The Kalman Predictor Solution

A recursive evaluation of x̂i(n/Yn−1) is easily obtained through

1. An orthogonal decomposition of Yn into Yn−1
⊕
EYn , where EYn is the space spanned

by the projection error P -tuple from projecting the P -tuple Y(n) onto Yn−1.

2. The state space system equations.

The subspace sequence EYn is often called the innovation subspace sequence as it at each
time instance n represents the new data information in the present subspace that is
”orthogonal” to the data information in the past subspace Yn−1.
Let us first look at the orthogonal decomposition of Yn. It is easily seen that

Yn = Sp {Y(1), . . . , Y(n− 1), Y(n)}
= Sp {Y(1), . . . , Y(n− 1)}+ Sp {Y(n)}
= Sp {Y(1), . . . , Y(n− 1)}

⊕
Sp
{
EY (n)

}
︸ ︷︷ ︸

EYn

where EY (n) is the the projection error P -tuple from projecting the P -tuple Y(n) onto
Yn−1, EY (n) = Y(n)− Ŷ(n/Yn−1) = {ey

1, . . . , ey
P } and ey

i = yi(n)− ŷi(n/Yn−1). We
know from Corollary 6-4 in the notes on The Geometric Tools of Hilbert Spaces that the
projection of a vector onto a subspace that is decomposed into orthogonal subspaces is
the sum of the projections of the vector onto the respective subspaces. We thus have
that

x̂i(n + 1/Yn) = x̂i(n + 1/Yn−1) + x̂i(n + 1/EY
n ).

The recursion for x̂i(n + 1/Yn) is now obtained by expanding x̂i(n + 1/Yn−1) through
the use of the state space recursion in Equation 1.1 and writing the projection x̂i(n + 1/EY

n )
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as the linear sum of the random vectors in the P -tuple EY (n). Using the state space
recursion in Equation 1.1 x̂i(n + 1/Yn−1) can be written as

x̂i(n + 1/Yn−1) = PYn−1 (xi(n + 1))

= PYn−1

 N∑
j=1

fij(n)xj(n) + vj(n)


=

N∑
j=1

fij(n)x̂j(n/Yn−1) + v̂j(n/Yn−1)︸ ︷︷ ︸
0

=
N∑

j=1

fij(n)x̂j(n/Yn−1).

The projection x̂i(n + 1/EY
n ) is given by

x̂i(n + 1/EY
n ) =

P∑
j=1

kij(n)ey
j (n),

where the projection coefficient vector ki(n) = (ki1(n), · · · , kiP (n))T is given by

ki(n) =

 ki1(n)
...

kiP (n)

 =
〈
EY (n),EY (n)

〉−1 〈
xi(n + 1),EY (n)

〉
.

Stacking the above results for i = 1, · · · , N, into a vector equation we obtain x̂1(n + 1/Yn)
...

x̂N (n + 1/Yn)


︸ ︷︷ ︸

x̂(n + 1/Yn)

=

 f11(n) · · · f1N (n)
...

. . .
...

fN1(n) · · · fNN (n)


︸ ︷︷ ︸

F (n)

 x̂1(n/Yn−1)
...

x̂N (n/Yn−1)


︸ ︷︷ ︸

x̂(n/Yn−1)

+

 k11(n) · · · k1P (n)
...

. . .
...

kN1(n) · · · kNP (n)


︸ ︷︷ ︸

K(n)

 ey
1(n)
...

ey
P (n)


︸ ︷︷ ︸

ey(n)

,

which gives the state space vector estimate time recursion

x̂(n + 1/Yn) = F (n)x̂(n/Yn−1) + K(n)ey(n),

where K(n) is the Kalman gain given by

K(n) =
〈
X(n + 1),EY (n)

〉T 〈
EY (n),EY (n)

〉−T
.

To obtain a complete time recursive solution the above equation needs to be comple-
mented with

1. An equation expressing the Kalman gain in other available variables, which will
include the the covariance matrix of ex(n + 1) = x(n + 1)− x̂(n + 1/Yn) denoted
by P (n + 1).

2. A time recursion for the covariance matrix P (n+1), the so called Ricatti equation.
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The two main components of the Kalman gain are
〈
X(n),EY (n)

〉T
and

〈
EY (n),EY (n)

〉T
.

Using the measurement equation of the state space system given in Equation 1.2 the in-
ner product

〈
EY (n),EY (n)

〉
can be expressed as〈

EY (n),EY (n)
〉

=
〈
Y(n)− Ŷ(n/Yn−1),Y(n)− Ŷ(n/Yn−1)

〉
=

〈
X(n)HT (n) + E(n)− X̂(n/Yn−1)HT (n),X(n)HT (n) + E(n)− X̂(n/Yn−1)HT (n)

〉
=

〈(
X(n)− X̂(n/Yn−1)

)
HT (n) + E(n),

(
X(n)− X̂(n/Yn−1)

)
HT (n) + E(n)

〉
= H(n)

〈(
X(n)− X̂(n/Yn−1)

)
,
(
X(n)− X̂(n/Yn−1)

)〉
︸ ︷︷ ︸

P T (n)

HT (n) + 〈E(n),E(n)〉︸ ︷︷ ︸
RT

e

= H(n)P T (n)HT (n) + RT
e .

Similarly we obtain for the inner product
〈
X(n + 1),EY (n)

〉
that〈

X(n + 1),EY (n)
〉

=
〈
X(n)F T (n) + V(n),EY (n)

〉
=

〈
X(n),EY (n)

〉
F T (n) +

〈
V(n),EY (n)

〉
︸ ︷︷ ︸

0

=
〈
X(n),Y(n)− Ŷ(n/Yn−1)

〉
F T (n)

=
〈
X(n),X(n)HT (n) + E(n)− X̂(n/Yn−1)HT (n)

〉
F T (n)

=
〈
X(n),

(
X(n)− X̂(n/Yn−1)

)
HT (n) + E(n)

〉
F T (n)

=
〈
X(n),EX(n)HT (n) + E(n)

〉
F T (n)

= H(n)
〈
X(n),EX(n)

〉
F T (n) + 〈X(n),E(n)〉︸ ︷︷ ︸

0

F T (n)

= H(n)
〈
EX(n),EX(n)

〉
︸ ︷︷ ︸

P T (n)

F T (n)

= H(n)P T (n)F T (n)

Inserting the above two inner product equations into the equation for the Kalman gain
we obtain

K(n) = F (n)P (n)HT (n)
(
H(n)P (n)HT (n) + Re

)−1
.

The final missing component needed to obtain a complete recursive solution is the time
recursion for P (n+1) = E

(
ex(n + 1)(ex(n + 1))H

)
, which is obtained from the following

time recursion for ex(n + 1) = x(n + 1)− x̂(n + 1/Yn).

ex(n + 1) = x(n + 1)− x̂(n + 1/Yn)
= F (n)x(n) + v(n)− (F (n)x̂(n/Yn−1) + K(n)ey(n))
= F (n) (x(n)− x̂(n/Yn−1))︸ ︷︷ ︸

ex(n)

−K(n)ey(n) + v(n)
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= F (n)ex(n)−K(n) (y(n)− ŷ(n/Yn−1)) + v(n)
= F (n)ex(n)−K(n) (H(n)x(n) + e(n)−H(n)x̂(n/Yn−1)) + v(n)
= F (n)ex(n)−K(n)H(n) (x(n)− x̂(n/Yn−1))︸ ︷︷ ︸

ex(n)

+v(n)−K(n)e(n)

= (F (n)−K(n)H(n)) ex(n) + v(n)−K(n)e(n).

Now as ex(n), v(n) and e(n) are independent from one another the time recursion for
P (n + 1) = E

(
ex(n + 1)(ex(n + 1))H

)
becomes

P (n + 1) = (F (n)−K(n)H(n)) P (n) (F (n)−K(n)H(n))T + Rv + K(n)Re(n)KT (n).

Summarizing the Kalman predictor equations we obtain the recursive algorithm below.

ey(n) = y(n)−H(n)x̂(n/Yn−1)

K(n) = F (n)P (n)HT (n)
(
H(n)P (n)HT (n) + Re

)−1

x̂(n + 1/Yn) = F (n)x̂(n/Yn−1) + K(n)ey(n)
P (n + 1) = (F (n)−K(n)H(n)) P (n) (F (n)−K(n)H(n))T + Rv + K(n)Re(n)KT (n).

For furter reading on the geometric development of the Kalman predictor and filter see
for example http://www.tele.ucl.ac.be/EDU/INMA2731/cours/Kalman.pdf.

http://www.tele.ucl.ac.be/EDU/INMA2731/cours/Kalman.pdf
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