### 9.2 Statistical Aspects of Least Squares

## Exercise 2.4 (2.2): Convergence rates for consistent estimators.

For most consistent estimators of the parameters of stationary processes, the estimation error $\hat{\theta}-\theta_{0}$ tends to zero as $1 / n$ when $n \rightarrow \infty$. For nonstationary processes, faster convergence rates may be expected. To see this, derive the variance of the least squares estimate in the model

$$
Y_{t}=\alpha t+D_{t}, t=1, \ldots, N
$$

with $D_{t}$ white noise, zero mean and variance $\lambda^{2}$.

## Solution:

The LS estimate $\hat{\alpha}$ of $\alpha$ is given as the solution to the corresponding normal equations

$$
\hat{\alpha}=\frac{\sum_{t=1}^{n} Y_{t} t}{\sum_{t=1}^{n} t^{2}}
$$

Thus

$$
\hat{\alpha}-\alpha=\frac{\sum_{t=1}^{n} D_{t} t}{\sum_{t=1}^{n} t^{2}}
$$

and

$$
\mathbb{E}[\hat{\alpha}-\alpha]^{2}=\mathbb{E} \frac{\sum_{t=1}^{n} \sum_{s=1}^{n} D_{t} t D_{s} s}{\left(\sum_{t=1}^{n} t^{2}\right)^{2}}=\frac{\lambda^{2}}{\sum_{t=1}^{n} t^{2}},
$$

since $\mathbb{E}\left[D_{t} D_{s}\right]=\delta_{t-s} \lambda^{2}$. As $\sum_{t=1}^{n} t^{2}=\frac{n(n+1)(2 n+1)}{6}$, it follows that the variance of $\hat{\alpha}$ goes to zero as $n \rightarrow \infty$.

## Exercise 2.5 (2.3)

Illustration of unbiasedness and consistency properties. Let $\left\{X_{i}\right\}_{i}$ be a sequence of i.i.d. Gaussian random variables with mean $\mu$ and variance $\sigma$. Both are unknown. Let $\left\{x_{i}\right\}_{i=1}^{n}$ be a realization of this process of length $n$. Consider the following estimate of $\mu$ :

$$
\hat{\mu}=\frac{1}{n} \sum_{i=1}^{N} x_{i}
$$

and the following two estimates of $\sigma$ :

$$
\left\{\begin{array}{l}
\hat{\sigma}_{1}=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\hat{\mu}\right)^{2} \\
\hat{\sigma}_{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\hat{\mu}\right)^{2}
\end{array}\right.
$$

determine the mean and the variance of the estimates $\hat{\mu}, \hat{\sigma}_{1}$ and $\hat{\sigma}_{2}$. Discuss their bias and consistency properties. Compare $\hat{\sigma}_{1}$ and $\hat{\sigma}_{2}$ in terms of their Mean Square Error (mse).

Solution:
The expected $\hat{\mu}$ is given as

$$
\mathbb{E}[\hat{\mu}]=\mathbb{E}\left[\frac{1}{n} \sum_{i=1}^{n} X_{i}\right]=\mu
$$

The variance of $\hat{\mu}$ is computed as

$$
\mathbb{E}[\hat{\mu}-\mu]^{2}=\mathbb{E}\left[\frac{1}{n^{2}} \sum_{i=1}^{n} \sum_{i=1}^{n}\left(X_{i}-\mu\right)\left(X_{j}-\mu\right)\right]=\mathbb{E}\left[\frac{1}{n^{2}} \sum_{i=1}^{n} \sum_{i=1}^{n} \delta_{i-j} \sigma^{2}\right]=\frac{\sigma^{2}}{n} .
$$

Next note that

$$
\mathbb{E}\left[X_{i}-\hat{\mu}\right]^{2}=\mathbb{E}\left[\frac{1}{n} \sum_{j=1}^{n}\left(X_{i}-X_{j}\right)\right]=\frac{n-1}{n} \sigma^{2}
$$

The bias of $\hat{\sigma}_{1}$ is derived as

$$
\mathbb{E}\left[\hat{\sigma}_{1}\right]=\mathbb{E}\left[\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\hat{\mu}\right)^{2}\right]=\frac{n-1}{n} \sigma^{2}
$$

while the bias of $\hat{\sigma}_{2}$ is 0 as seen by

$$
\mathbb{E}\left[\hat{\sigma}_{2}\right]=\mathbb{E}\left[\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\hat{\mu}\right)^{2}\right]=\sigma^{2}
$$

Hence $\hat{\mu}$ and $\hat{\sigma}_{2}$ are unbiased, while $\hat{\sigma}_{1}$ is 'only' asymptotically unbiased.
The variance of $\hat{\sigma}_{1}$ is derived as follows. First note that

$$
\mathbb{E}\left[\hat{\sigma}_{1}-\sigma^{2}\right]^{2}=\sigma^{4}-2 \sigma^{2} \mathbb{E}\left[\hat{\sigma}_{1}\right]+\mathbb{E}\left[\hat{\sigma}_{1}^{2}\right]=\left(\frac{2 n-1}{n^{2}}\right) \sigma^{2}
$$

The variance of $\hat{\sigma}_{2}$ is given as

$$
\mathbb{E}\left[\hat{\sigma}_{1}-\sigma^{2}\right]^{2}=\sigma^{4}-2 \sigma^{2} \mathbb{E}\left[\hat{\sigma}_{1}\right]+\mathbb{E}\left[\hat{\sigma}_{1}^{2}\right]=\left(\frac{2}{n-1}\right) \sigma^{2}
$$

Hence both $\hat{\sigma}_{1}$ and $\hat{\sigma}_{2}$ are consistent estimates, but for $n>1, \hat{\sigma}_{1}$ gives a lower variance than $\hat{\sigma}_{2}$.

