Chapter 15

Problem Solving Sessions

15.1 Dynamic Models

Exercise 1.1 (6.1): Stability boundary for a second-order system.
Consider the second-order AR model
Yt T a1Yt—1 + a2Yi—2 = €4

Derive and plot the area in the (a1, aq)-plane for which the model is asymptotically stable.
Solution:
The characteristic equation is
22+a12+a2 =0.

If z1, z9 denotes the roots of this equation, we have that
a; = —(21 + 2’2), g = Z1%29.
Consider the limiting case with one or both roots on the unit circle.

e One root in z = 1, the other one inside the interval z €] — 1, 1][.

a1 =—1—29, a3 =20 = a0 =—1—ay
e One root in z = —1, the other one inside the interval z €] — 1,1].
a1 =—1—29, ag = —29 = ao=—1+as

e Two complex conjugate roots z1, 29 = exp(+iw) with w € (0, 7]

a1 = —2cosw,as =1 = as € [-2,2]

These cases define a closed contour that encloses the stability area as in Figure (15.1).
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Exercise 1.2: Least Squares with Feedback

Consider the second-order AR model
Ye +ayi—1 = bus_1 +e;

where u; is given by feedback as
Uy = —Kyt

Show that given realizations of this signal we cannot estimate ag, by separately, but we can estimate
ag + bok. (Book p. 26)
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Exercise 1.3
Determine the covariance function for an AR(1) process
Y +ayi—1 = e

where e; come from a white noise process with zero mean and unit variance. Determine the
covariance function for an AR(2) process

yr +ayi—1 +ay(t —2) = e
Determine the covariance function for an MA(1) process
Y = e +berq

Solution:
(a). The stochastic model is

Yi+a1Yeo1 +a2Ye o =D
Then pre-multiplying both sides with Y;,Y;_1,...,Y;_, gives

E[Y,Y] + aE[Y,Y;_] = E[Y,D]
E[Y; 1Yy + aE[Y; _1Y; 1] = E[Y; 1 D]
E[Y; 2Yi] + aE[Y; 2Y; 1] = E[Y; 2 D]

E[Yi—, Vi] + aE[Y;— Yi1] = E[Yi—, Di],
and working out the expectations gives
ry(0) +ary(1) =1
ry(1) +ary(0) =0
ry(T) + ary(t — 1) = 0.

Hence we have that ry(7) = (—a)7r,(0). and that r,(0) + a(—ary(0)) =1 or r,(0) = .
(b). The stochastic model is

Yi+a1Yi1 +a2Ys 2 =Dy
Then pre-multiplying both sides with Y;, Y; _1,...,Y;_, gives
EY,Y;] + a1 E[Y:Yi1] + aoE[Y}Y;_o] = E[Y: D]
E[Y;—1Yi] + a1 E[Y;—1Yi1] + a2E[Yi 1Y, o] = E[Y;—1Dy]
E[Y; oYy + a1 E[Y:_oYi 1] + aoE[Y;_2Yi_o] = E[Y;_2Dy]

ElY; Y] + aiE[Y; Y, 1] + a2E[Y; .Y, o] = E[Y;_, D],
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and working out the expectations gives

ry(0) + a1y (1) + agry(2) =1
ry(1) + ai1ry(0) + asry(1) =0
ry(2) + airy(1) + asry(0) =0

ry(T) + a17y (7 — 1) + agry (T — 2) = 0.

The expressions of r,(7) are then implied by this system, and tend to zero when 7 — 0.
(c). The MA(1) case goes along the same lines. The stochastic model is given as

Y, = Dy +cDy_q,
then the Yule-walker equations are

E[Y,Y;] = E[Y;Dy] + cE[Y;Dy_1] = E[(D; + ¢Dy_1)Dy] + cE[(D; + ¢Dy—1)Dy—1]
E[Y;_1Y:] = E[Y;_1Dy] + cE[Y;— 1D 1] = E[(D¢—1 + ¢Dy—2)D¢] + cE[(D¢—1 + ¢Dy—2)Dy_1]

E[Y,_.Y;] = E[Y;_, D] + cE[Y,_ D,_1].

and working out the terms gives

ry(1) = 0.
which gives a direct formula for the covariances. Note that the covariances equal zero for lags larger
than the MA order.
Exercise 1.4

Given two systems

b
H =
1(Z) z4+a
and bos b
z

224+ a1z + as

(a) If those systems filters white noise {e;} coming from a stochastic process {D;}; which is zero
mean, and has unit variance. What is the variance of the filtered signal {y,}?

(b) What happens to the output of the second system when you move the poles of Hy(z) towards
the unit circle?

(c) Where to place the poles to get a ’low-pass’ filter?

(d) Where to put the poles in order to have a resonance top at w = 17
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(e) How does a resonant system appear on the different plots?

(f) What happens if Ha(z) got a zero close to the unit circle?
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Solution:

(a). A solution for computing the variance of the signal Y; = H;(z)u; is to construct the Yule-
Walker equations as in the correlation analysis. The model can be expressed in the time domain as
a first order model

Yt+1 + aYt = th

By multiplication of both sides with Y; and Y;;1, and taking expectations one gets

ElY:41Yip1] + aB[Yi41Y:] = bE[D: Y3 41]
E[Y;Y; 1] + aE[V;Y;] = bE[Y, D]

working out the terms gives

And this implies that r,(0) = 1.
The same can be worked out for the system Hs. Let

Y: = Ha(2)U,
where ¢, (w) = 5= for any frequency w. Then

¢y(w) = Ha(e™) Ha(e™)pu(w).

Hence
by (w) =

(b). The system will display more oscillations (resonances), or equivalently, the sequence of
covariances 1, (7) will decrease slower to zero when 7 increases.

(c). In order to get a low-pass filtering effect, the two (conjugate) poles should be placed close
to the unit circle close to the point where w = 1 (right end).

(d). In order to make the system to have a resonance top, there should be one dominant
frequency in the system. This frequency is then given as the Ze™ ~ 57° as w = 1.

(e). see (b).

(f). The filter becomes high-pass.
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Exercise 1.4

Given an input signal V; shaped by an ARMA filter,
Alg )X, =Clg Vi,

where A and C are monomials of appropriate order, and where V; white, zero mean and variance
o2. Given noisy observations of this signal, or

Vi =Xy + B

where E; follows a stochastic process with white, zero mean and variance o2 and uncorrelated to
D;. Rewrite this as a ARMA process, what would be the corresponding variance of the 'noise’?
How would the spectrum of Y; look like?

Solution:

Rewrite the system as

Clg)
Y, =E; + m%
and hence the spectrum of the output becomes
C(eiw)

¢y(°~”) = ¢6(w) + A(elw)¢v(w)

Let us rewrite this system as an ARMA system based on a possibly different noise source {G¢}+
with variance o7, that is we impose the form

with monomial D. Hence ¢, (w) = %ﬁi;% (w). Then equation both models gives that for any w

one has that

w UZ w 0'3 w w 02
A(E)E 4 C(e) 58 = A(e), (w) = D(e) 5"

Since A,C, D are monomials (i.e. A(1) = C(1) = D(1) = 1), calculation then gives that o =
O'S + o2

v
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Exercise 1.5 (3.1): Determine the time constant 7' from a step response.

A first order system Y (s) = G(s)U(s) with

or in time domain as a differential equation

dl;g ) 4 yt) = Ku(t —7)

derive a formula of the step response of an input u; = I(t > 0).
Solution: The system is T2 (t) + y(t) = Ku(t — 7). The step response is therefor

) 0 t<T
y =
K (1 —exp(=(t —7)/T))
The tangent at t = 7 is given as
) =27
Y =T T

The tangent reaches the steady state value K at time t =74 T.

Exercise 1.6 (3.10): Step response as a special case of spectral analysis.

Let (y:): be the step response of an LTI H (¢~ !) to an input u; = al(t > 0). Assume y; = 0 for
t <0and y =~ cfort> N. Justify the following rough estimate of H

hp = "Y1 g 0. N
a

and show that it is approximatively equal to the estimate provided by the spectral analysis.
Solution:
From

t t
Yt = thut,k = ath
k=0 k=0

and since y; remains constant for values t > N it follows that

hy = Yt — Yi—1
a
for t =0,1,2,...,n, and since h; = 0 for large n. Thus the following is a possible estimate of the

transfer function:

H(e™) = Z hi, exp(—iwk)
k=0

(yk — Yk—1) exp(—iwk)

Il
IS
Mz

w
O

1 1
Z yi exp(—iwk) - Z yi exp(—iwk) exp(—iw) = aY (W) (1 — exp(—iw)).
=0 k=0
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Now

o0 oo
Uw) = kz_;) uy, exp —iwka kz_oexp —iwk = m.
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Exercise 1.7 (4.5): Ill-conditioning of the normal equations in case of a polynomial
trend model.

Given model
Yy =aotait+ - +at" +e

Show that the condition number of the associated matrix ®T® is ill-conditioned:
cond(®T®) > O(N?"/(2r + 1))

for large n, and where r > 1 is the polynomial order. Hint. Use the relations for a symmetric
matrix A:

o Amax(A) Z max; An
o Amin(14) S mini Au

Solution:
Since for large values of n one has

zn:tk -0 (Zk+11>
t=1 +
forall k =1,2,..., it follows that

oy _ Amax(0?) _ maxi[¢T¢li (0T _ n’r
cond (%) = Amin(¢?)) = min;[¢Tgli; © 2r 41 [O(m) =0 2r+1)°

which is very large even for moderate values of n and 7.
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