
Chapter 15

Problem Solving Sessions

15.1 Dynamic Models

Exercise 1.1 (6.1): Stability boundary for a second-order system.

Consider the second-order AR model

yt + a1yt−1 + a2yt−2 = et

Derive and plot the area in the (a1, a2)-plane for which the model is asymptotically stable.
Solution:
The characteristic equation is

z2 + a1z + a2 = 0.

If z1, z2 denotes the roots of this equation, we have that

a1 = −(z1 + z2), a2 = z1z2.

Consider the limiting case with one or both roots on the unit circle.

• One root in z = 1, the other one inside the interval z ∈]− 1, 1[.

a1 = −1− z2, a2 = z2 ⇒ a2 = −1− a2

• One root in z = −1, the other one inside the interval z ∈]− 1, 1[.

a1 = −1− z2, a2 = −z2 ⇒ a2 = −1 + a2

• Two complex conjugate roots z1, z2 = exp(±iω) with ω ∈ (0, π]

a1 = −2 cosω, a2 = 1 ⇒ a2 ∈ [−2, 2]

These cases define a closed contour that encloses the stability area as in Figure (15.1).
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Exercise 1.2: Least Squares with Feedback

Consider the second-order AR model

yt + ayt−1 = but−1 + et

where ut is given by feedback as
ut = −Kyt.

Show that given realizations of this signal we cannot estimate a0, b0 separately, but we can estimate
a0 + b0k. (Book p. 26)
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Exercise 1.3

Determine the covariance function for an AR(1) process

yt + ayt−1 = et

where et come from a white noise process with zero mean and unit variance. Determine the
covariance function for an AR(2) process

yt + ayt−1 + ay(t− 2) = et

Determine the covariance function for an MA(1) process

yt = et + bet−1

Solution:
(a). The stochastic model is

Yt + a1Yt−1 + a2Yt−2 = Dt

Then pre-multiplying both sides with Yt, Yt−1, . . . , Yt−τ gives






E[YtYt] + aE[YtYt−1] = E[YtDt]

E[Yt−1Yt] + aE[Yt−1Yt−1] = E[Yt−1Dt]

E[Yt−2Yt] + aE[Yt−2Yt−1] = E[Yt−2Dt]
...

E[Yt−τYt] + aE[Yt−τYt−1] = E[Yt−τDt],

and working out the expectations gives





ry(0) + ary(1) = 1

ry(1) + ary(0) = 0
...

ry(τ) + ary(τ − 1) = 0.

Hence we have that ry(τ) = (−a)τry(0). and that ry(0) + a(−ary(0)) = 1 or ry(0) =
1

1−a2 .
(b). The stochastic model is

Yt + a1Yt−1 + a2Yt−2 = Dt

Then pre-multiplying both sides with Yt, Yt−1, . . . , Yt−τ gives






E[YtYt] + a1E[YtYt−1] + a2E[YtYt−2] = E[YtDt]

E[Yt−1Yt] + a1E[Yt−1Yt−1] + a2E[Yt−1Yt−2] = E[Yt−1Dt]

E[Yt−2Yt] + a1E[Yt−2Yt−1] + a2E[Yt−2Yt−2] = E[Yt−2Dt]
...

E[Yt−τYt] + a1E[Yt−τYt−1] + a2E[Yt−τYt−2] = E[Yt−τDt],
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and working out the expectations gives






ry(0) + a1ry(1) + a2ry(2) = 1

ry(1) + a1ry(0) + a2ry(1) = 0

ry(2) + a1ry(1) + a2ry(0) = 0
...

ry(τ) + a1ry(τ − 1) + a2ry(τ − 2) = 0.

The expressions of ry(τ) are then implied by this system, and tend to zero when τ → 0.
(c). The MA(1) case goes along the same lines. The stochastic model is given as

Yt = Dt + cDt−1,

then the Yule-walker equations are





E[YtYt] = E[YtDt] + cE[YtDt−1] = E[(Dt + cDt−1)Dt] + cE[(Dt + cDt−1)Dt−1]

E[Yt−1Yt] = E[Yt−1Dt] + cE[Yt−1Dt−1] = E[(Dt−1 + cDt−2)Dt] + cE[(Dt−1 + cDt−2)Dt−1]
...

E[Yt−τYt] = E[Yt−τDt] + cE[Yt−τDt−1].

and working out the terms gives 




ry(0) = 1 + c2

ry(1) = c
...

ry(τ) = 0.

which gives a direct formula for the covariances. Note that the covariances equal zero for lags larger
than the MA order.

Exercise 1.4

Given two systems

H1(z) =
b

z + a

and

H2(z) =
b0z + b1

z2 + a1z + a2

(a) If those systems filters white noise {et} coming from a stochastic process {Dt}t which is zero
mean, and has unit variance. What is the variance of the filtered signal {yt}?

(b) What happens to the output of the second system when you move the poles of H2(z) towards
the unit circle?

(c) Where to place the poles to get a ’low-pass’ filter?

(d) Where to put the poles in order to have a resonance top at ω = 1?
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(e) How does a resonant system appear on the different plots?

(f) What happens if H2(z) got a zero close to the unit circle?
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Solution:
(a). A solution for computing the variance of the signal Yt = H1(z)ut is to construct the Yule-

Walker equations as in the correlation analysis. The model can be expressed in the time domain as
a first order model

Yt+1 + aYt = bDt.

By multiplication of both sides with Yt and Yt+1, and taking expectations one gets

�
E[Yt+1Yt+1] + aE[Yt+1Yt] = bE[DtYt+1]

E[YtYt+1] + aE[YtYt] = bE[YtDt].

working out the terms gives �
ry(0) + ary(1) = b2

ry(1) = ary(0) = 0.

And this implies that ry(0) = 1.
The same can be worked out for the system H2. Let

Yt = H2(z)Ut

where φu(ω) =
1
2π for any frequency ω. Then

φy(ω) = H2(e
iω)H2(e

−iω)φu(ω).

Hence
φy(ω) =

(b). The system will display more oscillations (resonances), or equivalently, the sequence of
covariances ry(τ) will decrease slower to zero when τ increases.

(c). In order to get a low-pass filtering effect, the two (conjugate) poles should be placed close
to the unit circle close to the point where ω = 1 (right end).

(d). In order to make the system to have a resonance top, there should be one dominant
frequency in the system. This frequency is then given as the ∠eiω ≈ 57◦ as ω = 1.

(e). see (b).
(f). The filter becomes high-pass.
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Exercise 1.4

Given an input signal Vt shaped by an ARMA filter,

A(q−1)Xt = C(q−1)Vt,

where A and C are monomials of appropriate order, and where Vt white, zero mean and variance
σ2
v
. Given noisy observations of this signal, or

Yt = Xt + Et

where Et follows a stochastic process with white, zero mean and variance σ2
e
and uncorrelated to

Dt. Rewrite this as a ARMA process, what would be the corresponding variance of the ’noise’?
How would the spectrum of Yt look like?

Solution:
Rewrite the system as

Yt = Et +
C(q−1)

A(q−1)
Vt

and hence the spectrum of the output becomes

φy(ω) = φe(ω) +
C(eiω)

A(eiω)
φv(ω)

Let us rewrite this system as an ARMA system based on a possibly different noise source {Gt}t
with variance σ2

g
, that is we impose the form

Yt =
D(q−1)

A(q−1)
Gt

with monomial D. Hence φy(ω) =
D(eiω)
A(eiω)φg(ω). Then equation both models gives that for any ω

one has that

A(eiω)
σ2
e

2π
+ C(eiω)

σ2
e

2π
= A(eiω)φy(ω) = D(eiω)

σ2
g

2π

Since A,C,D are monomials (i.e. A(1) = C(1) = D(1) = 1), calculation then gives that σ2
g
=

σ2
e
+ σ2

v
.
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Exercise 1.5 (3.1): Determine the time constant T from a step response.

A first order system Y (s) = G(s)U(s) with

G(s) =
K

1 + sT
e−sτ

or in time domain as a differential equation

T
dy(t)

dt
+ y(t) = Ku(t− τ)

derive a formula of the step response of an input ut = I(t > 0).

Solution: The system is T dy(t)
dt

+ y(t) = Ku(t− τ). The step response is therefor

y(t) =

�
0 t < τ

K (1− exp(−(t− τ)/T ))

The tangent at t = τ is given as

y�(t) =
K

T
(t− τ)

The tangent reaches the steady state value K at time t = τ + T .

Exercise 1.6 (3.10): Step response as a special case of spectral analysis.

Let (yt)t be the step response of an LTI H(q−1) to an input ut = aI(t ≥ 0). Assume yt = 0 for
t < 0 and yt ≈ c for t > N . Justify the following rough estimate of H

ĥk =
yk − yk−1

a
, ∀k = 0, . . . , N

and show that it is approximatively equal to the estimate provided by the spectral analysis.
Solution:
From

yt =
t�

k=0

hkut−k = a
t�

k=0

hk

and since yt remains constant for values t > N it follows that

ht =
yt − yt−1

a

for t = 0, 1, 2, . . . , n, and since ht ≈ 0 for large n. Thus the following is a possible estimate of the
transfer function:

Ĥ(eiω) =
n�

k=0

hk exp(−iωk)

=
1

a

n�

k=0

(yk − yk−1) exp(−iωk)

≈ 1

a

n�

k=0

yk exp(−iωk)− 1

a

n�

k=0

yk exp(−iωk) exp(−iω) =
1

a
Yn(ω)(1− exp(−iω)).
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Now

U(ω) =
∞�

k=0

uk exp−iωka
∞�

k=0

exp−iωk =
a

1− exp−iω
.
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Exercise 1.7 (4.5): Ill-conditioning of the normal equations in case of a polynomial
trend model.

Given model
yt = a0 + a1t+ · · ·+ art

r + et

Show that the condition number of the associated matrix ΦTΦ is ill-conditioned:

cond(ΦTΦ) ≥ O(N2r/(2r + 1))

for large n, and where r > 1 is the polynomial order. Hint. Use the relations for a symmetric
matrix A:

• λmax(A) ≥ maxi Aii

• λmin(A) ≤ mini Aii

Solution:
Since for large values of n one has

n�

t=1

tk = O

�
nk+1

k + 1

�

for all k = 1, 2, . . . , it follows that

cond(φφ) =
λmax(φφ)

λmin(φφ))
≥ maxi[φTφ]ii

mini[φTφ]ii
= O

�
n2r+1

2r + 1

�
/O(n) = O

�
n2r

2r + 1

�
,

which is very large even for moderate values of n and r.
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