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15.3 Prediction Error Methods

Exercise 3.3 (11.1) On the use of cross-correlation test for the LS model.

Consider an ARX model
A(q−1)yt = B(q−1)ut + et

with parameters θ =
�
a1, . . . , ana , b1, . . . bnb

�T

. Assume that the estimate θ̂ is found by LS, show

that r̂eu(τ) =
1
n

�
n

t=1 utet = 0 for all τ = 1, . . . , nb.
Solution: The estimate is given by the normal equations

�
n�

t=1

ϕtϕ
T

t

�
θ̂ =

�
n�

t=1

ϕtyt

�

This gives using �t = yt − ϕT

t
θ̂ that

n�

t=1

ϕt�t =
n�

t=1

ϕt

�
ϕT

t
θ̂ − yt

�
= 0.
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Exercise 3.4 (11.2) Identifiability results for ARX models.

Consider the system (with A0, B0 coprime, and degrees na0 , nb0)

A0(q
−1)Yt = B0(q

−1)ut +Dt

where Dt is zero mean, white noise. Let {yt}t be realizations of the stochastic process {Yt}. Use
the LS in the model structure

A(q−1)yt = B(q−1)ut + �t

with degrees na ≥ na0 and nb ≥ nb0 . Assume the system operates in open-loop and the input
ut is PE of order nb. Let �t(θ) denote the random variables modeling the residuals �t for given
parameters θ = (A,B). Prove the following results:

(a) The asymptotic cost function E[�2
t
(θ)] has a unique minimum.

(b) The estimated polynomials are coprime.

(c) The information matrix is nonsingular.

Compare with the properties of ARMAX models, see e.g. Example 11.6.
Solution: The prediction error is given as

�t = A(q−1)yt −B(q−1)ut =
A(q−1)B0(q−1)−A0(q−1)B(q−1)

A0(q−1)
ut +

A(q−1)

A0(q−1)
Dt

Hence the asymptotic loss function satisfies

E[�2
t
(θ)] = E

�
A(q−1)B0(q−1)−A0(q−1)B(q−1)

A0(q−1)
ut

�2
+ E

�
A(q−1)

A0(q−1)
Dt

�2

≥ E
�
A(q−1)

A0(q−1)
Dt

�2
= E

�
A(q−1)

A0(q−1)
D2

t

�
≥ E

�
D2

t

�

Hence, equality holds only if

EAB0 −A0B

A0
ut = 0

and
A

A0
= 1.

The second equation gives A = A0, the second one thus (B0 −B)ut = 0. We have thus proven that
the global minimum is unique, and that A,B are coprime.

(c) According to example 11.6, p435 in the book we have that the information matrix is non-
singular if and only if ϕt = ∂�t

∂θ
has a nonsingular covariance matrix. Then a relevant equation

is
α(q−1)yt − β(q−1)ut = 0

which gives
α(q−1)B0(q−1)−A0(q−1)β(q−1)

A0(q−1)
ut +

α(q−1)

A0(q−1)
Dt = 0.

Again, when assuming independence of Dt and ut, and that for some t Dt �= 0 and ut is PE of any
order we have that α = β = 0, and hence the information matrix is nonsingular asymptotically (see
also eqs. 11.29-11.32) in the book.
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Exercise 3.5 (11.7): An illustration of the Parsimony Principle.

Consider the following AR(1) process:

Yt + a0Yt−1 = Dt,

with |a0| < 1 unknown, and where {Dt}t is a white noise stochastic process with zero mean and
variance λ2. Let us have a realization {yt}nt=1 of length n of this process. Then assume we fit this
system with the following two candidate models:

M1 : yt + ayt−1 = �t

and
M2 : yt + a1yt−1 + a2yt−2 = ��

t

Let â denote the LS estimate of a in M1, and let â1, â2 be the LS estimate in M2. What are the
asymptotic variances

√
n(â− a0) and

√
n(â1 − a0)?

Solution: Consider the expression for the inverse of a symmetric 2× 2 matrix with a, c �= 0

�
a b
c d

�−1

=
1

ad− bc

�
d −b
−c a

�
.

The asymptotic covariance matrix of the LS estimate of the parameters of an AR model structure
which contains the true system follows the general theory, so we have that

P1 = lim
n→∞

n

λ2
E[â− a0]

2 =
�
E[y2

t
]
�−1

For M2 the covariance is given as

P2 = lim
n→∞

n

λ2
E[(a− â)(a− â)T ] =

��
E[Y 2

t
] E[YtYt−1]

E[YtYt−1] E[Y 2
t
]

��−1

where we define r0 = E[Y 2
t
] and r1 = E[YtYt−1]. This means that var(â) = 1

r0
and var â1 = r0

r
2
0−r

2
1
,

hence
var(â)

var(â1)
= 1− r21

r20
≤ 1

In order to get more insight in the inequality above, note that some simple calculation shows that
for all k ≥ 0 that

rk = λ2 (−a0)k

1− a2
o

Thus
var(â)

var(â1)
= 1− a20,

and thus the closer a0 goes to zero, the smaller the difference between the variances. Note also
that for |a0| close to 1, variance var(â) might take very small values, while var(â1) =

1
λ2 does not

depend on a0.
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Exercise 3.6 (11.8): The parsimony principle does not necessarily hold for

nonhierarchical models.

Consider the system
S1 : Yt = b0Ut−1 +Dt

where {Dt} and {Ut}t are mutually independent white noise sequences. The variance of Dt is λ2.
Let {yt} and {ut} be realizations of length n of the process {Yt}, {Ut} respectively. Consider the
following two model structures:

�
M1 : yt + ayt−1 = but−1 + �1

t

M2 : yt = b1ut−1 + b2ut−1 + b2u(t− 3) + �2
t

The parameter estimates are obtained by LS.

(a) Let E[U2
t
] = σ2. Determine the asymptotic covariance matrices of the estimation errors






M1 : δ1 =
√
n

λ

�
â

b̂− b0

�

M2 : δ2 =
√
n

λ




b̂1 − b

b̂2
b̂3





where n denotes the number of samples.

(b) Let the adequacy of a model structure be expressed by its ability to express the system’s
output one step ahead, when E[U2

t
] = s2 �= σ2. Then consider

AM1 = E
�
E[�2

t
(θ̂M1) | θ̂M1 ]

�

and
AM2 = E

�
E[�2

t
(θ̂M2) | θ̂M2 ]

�

Determine asymptotically (for n → ∞) valid approximations for AM1 and AM2 . Show that
the inequality AM1 ≤ AM2 does not necessarily hold. Does this principle contradict the
parsimony principle?

Solution: (a) The covariances of the estimates under M1 and M2 are given as






P1 =

�
1

λ2+σ2b2
0

0 1/σ2

�

P2 = 1
σ2




1 0 0

0 1 0

0 0 1





Note that the variance of the estimate of b equals 1/σ2 in both cases.
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(b) Straightforward calculations give

AM1 = E
�
E[Dt + aYt−1 − (b̂− b)Ut−1]

2
�
= λ2 + â2(b2s2 + λ2) + (b̂− b)2s2,

equals

E
�
λ2 + E

��
(λ2 + s2b2) s2

� � â2

(b̂− b)2

���

Similarly, one has that

AM2 = E
�
E[Dt − (b̂1 − b)Ut−1 − b̂2Ut−2 − b̂3Ut−3]

2
�
= λ2 + s2E

�
(b̂1 − b) + b̂22 + b̂23

�

Inserting the expressions for the estimates of M1 and M2 gives asymptotically valid expressions
for AM1 and AM2 as

AM1 = λ2 +
λ2

n

�
λ2 + s2b2

λ2 + σ2b2
+

s2

σ2

�

and

AM2 = λ2 +
λ

n

3s2

σ2

Note that for s = 0 we have that

AM1 ≈ λ2(1 + 2/n) < AM2 ≈ λ2(1 + 3/n)

For s �= σ, one may however obtain the converse. For example take b = λ2 = σ2 = 1 and s2 = 0.1.
Thus the ’simpler’ structure M1 may on the average lead to less accurate predictions than those
obtained by M2! Note that since M1 �⊂ M2, this example is not in contradiction to the parsimony
principle.
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