15.3 Prediction Error Methods

Exercise 3.3 (11.1) On the use of cross-correlation test for the LS model.
Consider an ARX model

$$
A\left(q^{-1}\right) y_{t}=B\left(q^{-1}\right) u_{t}+e_{t}
$$

with parameters $\theta=\left(a_{1}, \ldots, a_{n_{a}}, b_{1}, \ldots b_{n_{b}}\right)^{T}$. Assume that the estimate $\hat{\theta}$ is found by LS, show that $\hat{r}_{e u}(\tau)=\frac{1}{n} \sum_{t=1}^{n} u_{t} e_{t}=0$ for all $\tau=1, \ldots, n_{b}$.

Solution: The estimate is given by the normal equations

$$
\left(\sum_{t=1}^{n} \varphi_{t} \varphi_{t}^{T}\right) \hat{\theta}=\left(\sum_{t=1}^{n} \varphi_{t} y_{t}\right)
$$

This gives using $\epsilon_{t}=y_{t}-\varphi_{t}^{T} \hat{\theta}$ that

$$
\sum_{t=1}^{n} \varphi_{t} \epsilon_{t}=\sum_{t=1}^{n} \varphi_{t}\left(\varphi_{t}^{T} \hat{\theta}-y_{t}\right)=0
$$

Exercise 3.4 (11.2) Identifiability results for ARX models.

Consider the system (with A_{0}, B_{0} coprime, and degrees $n_{a_{0}}, n_{b_{0}}$)

$$
A_{0}\left(q^{-1}\right) Y_{t}=B_{0}\left(q^{-1}\right) u_{t}+D_{t}
$$

where D_{t} is zero mean, white noise. Let $\left\{y_{t}\right\}_{t}$ be realizations of the stochastic process $\left\{Y_{t}\right\}$. Use the LS in the model structure

$$
A\left(q^{-1}\right) y_{t}=B\left(q^{-1}\right) u_{t}+\epsilon_{t}
$$

with degrees $n_{a} \geq n_{a_{0}}$ and $n_{b} \geq n_{b_{0}}$. Assume the system operates in open-loop and the input u_{t} is PE of order n_{b}. Let $\epsilon_{t}(\theta)$ denote the random variables modeling the residuals ϵ_{t} for given parameters $\theta=(A, B)$. Prove the following results:
(a) The asymptotic cost function $\mathbb{E}\left[\epsilon_{t}^{2}(\theta)\right]$ has a unique minimum.
(b) The estimated polynomials are coprime.
(c) The information matrix is nonsingular.

Compare with the properties of ARMAX models, see e.g. Example 11.6.
Solution: The prediction error is given as

$$
\epsilon_{t}=A\left(q^{-1}\right) y_{t}-B\left(q^{-1}\right) u_{t}=\frac{A\left(q^{-1}\right) B_{0}\left(q^{-1}\right)-A_{0}\left(q^{-1}\right) B\left(q^{-1}\right)}{A_{0}\left(q^{-1}\right)} u_{t}+\frac{A\left(q^{-1}\right)}{A_{0}\left(q^{-1}\right)} D_{t}
$$

Hence the asymptotic loss function satisfies

$$
\begin{aligned}
& \mathbb{E}\left[\epsilon_{t}^{2}(\theta)\right]=\mathbb{E}\left[\frac{A\left(q^{-1}\right) B_{0}\left(q^{-1}\right)-A_{0}\left(q^{-1}\right) B\left(q^{-1}\right)}{A_{0}\left(q^{-1}\right)} u_{t}\right]^{2}+\mathbb{E}\left[\frac{A\left(q^{-1}\right)}{A_{0}\left(q^{-1}\right)} D_{t}\right]^{2} \\
& \geq \mathbb{E}\left[\frac{A\left(q^{-1}\right)}{A_{0}\left(q^{-1}\right)} D_{t}\right]^{2}=\mathbb{E}\left[\frac{A\left(q^{-1}\right)}{A_{0}\left(q^{-1}\right)} D_{t}^{2}\right] \geq \mathbb{E}\left[D_{t}^{2}\right]
\end{aligned}
$$

Hence, equality holds only if

$$
\mathbb{E} \frac{A B_{0}-A_{0} B}{A_{0}} u_{t}=0
$$

and

$$
\frac{A}{A_{0}}=1
$$

The second equation gives $A=A_{0}$, the second one thus $\left(B_{0}-B\right) u_{t}=0$. We have thus proven that the global minimum is unique, and that A, B are coprime.
(c) According to example 11.6, p435 in the book we have that the information matrix is nonsingular if and only if $\varphi_{t}=\frac{\partial \epsilon_{t}}{\partial \theta}$ has a nonsingular covariance matrix. Then a relevant equation is

$$
\alpha\left(q^{-1}\right) y_{t}-\beta\left(q^{-1}\right) u_{t}=0
$$

which gives

$$
\frac{\alpha\left(q^{-1}\right) B_{0}\left(q^{-1}\right)-A_{0}\left(q^{-1}\right) \beta\left(q^{-1}\right)}{A_{0}\left(q^{-1}\right)} u_{t}+\frac{\alpha\left(q^{-1}\right)}{A_{0}\left(q^{-1}\right)} D_{t}=0 .
$$

Again, when assuming independence of D_{t} and u_{t}, and that for some $t D_{t} \neq 0$ and u_{t} is PE of any order we have that $\alpha=\beta=0$, and hence the information matrix is nonsingular asymptotically (see also eqs. 11.29-11.32) in the book.

Exercise 3.5 (11.7): An illustration of the Parsimony Principle.

Consider the following $\operatorname{AR}(1)$ process:

$$
Y_{t}+a_{0} Y_{t-1}=D_{t},
$$

with $\left|a_{0}\right|<1$ unknown, and where $\left\{D_{t}\right\}_{t}$ is a white noise stochastic process with zero mean and variance λ^{2}. Let us have a realization $\left\{y_{t}\right\}_{t=1}^{n}$ of length n of this process. Then assume we fit this system with the following two candidate models:

$$
\mathcal{M}_{1}: y_{t}+a y_{t-1}=\epsilon_{t}
$$

and

$$
\mathcal{M}_{2}: y_{t}+a_{1} y_{t-1}+a_{2} y_{t-2}=\epsilon_{t}^{\prime}
$$

Let \hat{a} denote the LS estimate of a in \mathcal{M}_{1}, and let \hat{a}_{1}, \hat{a}_{2} be the LS estimate in \mathcal{M}_{2}. What are the asymptotic variances $\sqrt{n}\left(\hat{a}-a_{0}\right)$ and $\sqrt{n}\left(\hat{a}_{1}-a_{0}\right)$?

Solution: Consider the expression for the inverse of a symmetric 2×2 matrix with $a, c \neq 0$

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

The asymptotic covariance matrix of the LS estimate of the parameters of an AR model structure which contains the true system follows the general theory, so we have that

$$
P_{1}=\lim _{n \rightarrow \infty} \frac{n}{\lambda^{2}} \mathbb{E}\left[\hat{a}-a_{0}\right]^{2}=\left(\mathbb{E}\left[y_{t}^{2}\right]\right)^{-1}
$$

For M_{2} the covariance is given as

$$
\left.P_{2}=\lim _{n \rightarrow \infty} \frac{n}{\lambda^{2}} \mathbb{E}\left[(a-\hat{a})(a-\hat{a})^{T}\right]=\left(\begin{array}{cc}
\mathbb{E}\left[Y_{t}^{2}\right] & \mathbb{E}\left[Y_{t} Y_{t-1}\right] \\
\mathbb{E}\left[Y_{t} Y_{t-1}\right] & \mathbb{E}\left[Y_{t}^{2}\right]
\end{array}\right]\right)^{-1}
$$

where we define $r_{0}=\mathbb{E}\left[Y_{t}^{2}\right]$ and $r_{1}=\mathbb{E}\left[Y_{t} Y_{t-1}\right]$. This means that $\operatorname{var}(\hat{a})=\frac{1}{r_{0}}$ and $\operatorname{var} \hat{a}_{1}=\frac{r_{0}}{r_{0}^{2}-r_{1}^{2}}$, hence

$$
\frac{\operatorname{var}(\hat{a})}{\operatorname{var}\left(\hat{a}_{1}\right)}=1-\frac{r_{1}^{2}}{r_{0}^{2}} \leq 1
$$

In order to get more insight in the inequality above, note that some simple calculation shows that for all $k \geq 0$ that

$$
r_{k}=\lambda^{2} \frac{\left(-a_{0}\right)^{k}}{1-a_{o}^{2}}
$$

Thus

$$
\frac{\operatorname{var}(\hat{a})}{\operatorname{var}\left(\hat{a}_{1}\right)}=1-a_{0}^{2},
$$

and thus the closer a_{0} goes to zero, the smaller the difference between the variances. Note also that for $\left|a_{0}\right|$ close to 1 , variance $\operatorname{var}(\hat{a})$ might take very small values, while $\operatorname{var}\left(\hat{a}_{1}\right)=\frac{1}{\lambda^{2}}$ does not depend on a_{0}.

Exercise 3.6 (11.8): The parsimony principle does not necessarily hold for nonhierarchical models.

Consider the system

$$
\mathcal{S}_{1}: Y_{t}=b_{0} U_{t-1}+D_{t}
$$

where $\left\{D_{t}\right\}$ and $\left\{U_{t}\right\}_{t}$ are mutually independent white noise sequences. The variance of D_{t} is λ^{2}. Let $\left\{y_{t}\right\}$ and $\left\{u_{t}\right\}$ be realizations of length n of the process $\left\{Y_{t}\right\},\left\{U_{t}\right\}$ respectively. Consider the following two model structures:

$$
\left\{\begin{array}{l}
\mathcal{M}_{1}: y_{t}+a y_{t-1}=b u_{t-1}+\epsilon_{t}^{1} \\
\mathcal{M}_{2}: y_{t}=b_{1} u_{t-1}+b_{2} u_{t-1}+b_{2} u(t-3)+\epsilon_{t}^{2}
\end{array}\right.
$$

The parameter estimates are obtained by LS.
(a) Let $\mathbb{E}\left[U_{t}^{2}\right]=\sigma^{2}$. Determine the asymptotic covariance matrices of the estimation errors

$$
\begin{cases}\mathcal{M}_{1}: & \delta_{1}=\frac{\sqrt{n}}{\lambda}\left[\begin{array}{c}
\hat{a} \\
\hat{b}-b_{0}
\end{array}\right] \\
\mathcal{M}_{2}: & \delta_{2}=\frac{\sqrt{n}}{\lambda}\left[\begin{array}{c}
\hat{b}_{1}-b \\
\hat{b}_{2} \\
\hat{b}_{3}
\end{array}\right]\end{cases}
$$

where n denotes the number of samples.
(b) Let the adequacy of a model structure be expressed by its ability to express the system's output one step ahead, when $\mathbb{E}\left[U_{t}^{2}\right]=s^{2} \neq \sigma^{2}$. Then consider

$$
A_{\mathcal{M}_{1}}=\mathbb{E}\left[\mathbb{E}\left[\epsilon_{t}^{2}\left(\hat{\theta}_{\mathcal{M}_{1}}\right) \mid \hat{\theta}_{\mathcal{M}_{1}}\right]\right]
$$

and

$$
A_{\mathcal{M}_{2}}=\mathbb{E}\left[\mathbb{E}\left[\epsilon_{t}^{2}\left(\hat{\theta}_{\mathcal{M}_{2}}\right) \mid \hat{\theta}_{\mathcal{M}_{2}}\right]\right]
$$

Determine asymptotically (for $n \rightarrow \infty$) valid approximations for $A_{\mathcal{M}_{1}}$ and $A_{\mathcal{M}_{2}}$. Show that the inequality $A_{\mathcal{M}_{1}} \leq A_{\mathcal{M}_{2}}$ does not necessarily hold. Does this principle contradict the parsimony principle?

Solution: (a) The covariances of the estimates under \mathcal{M}_{1} and \mathcal{M}_{2} are given as

$$
\left\{\begin{array}{l}
P_{1}=\left[\begin{array}{cc}
\frac{1}{\lambda^{2}+\sigma^{2} b^{2}} & 0 \\
0 & 1 / \sigma^{2}
\end{array}\right] \\
P_{2}=\frac{1}{\sigma^{2}}\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
\end{array}\right.
$$

Note that the variance of the estimate of b equals $1 / \sigma^{2}$ in both cases.
(b) Straightforward calculations give

$$
A_{\mathcal{M}_{1}}=\mathbb{E}\left[\mathbb{E}\left[D_{t}+a Y_{t-1}-(\hat{b}-b) U_{t-1}\right]^{2}\right]=\lambda^{2}+\hat{a}^{2}\left(b^{2} s^{2}+\lambda^{2}\right)+(\hat{b}-b)^{2} s^{2}
$$

equals

$$
\left.\mathbb{E}\left[\lambda^{2}+\mathbb{E}\left[\begin{array}{ll}
\left(\lambda^{2}+s^{2} b^{2}\right) & s^{2}
\end{array}\right]\left[\begin{array}{c}
\hat{a}^{2} \\
(\hat{b}-b)^{2}
\end{array}\right]\right]\right]
$$

Similarly, one has that

$$
A_{\mathcal{M}_{2}}=\mathbb{E}\left[\mathbb{E}\left[D_{t}-\left(\hat{b}_{1}-b\right) U_{t-1}-\hat{b}_{2} U_{t-2}-\hat{b}_{3} U_{t-3}\right]^{2}\right]=\lambda^{2}+s^{2} \mathbb{E}\left[\left(\hat{b}_{1}-b\right)+\hat{b}_{2}^{2}+\hat{b}_{3}^{2}\right]
$$

Inserting the expressions for the estimates of \mathcal{M}_{1} and \mathcal{M}_{2} gives asymptotically valid expressions for $A_{\mathcal{M}_{1}}$ and $A_{\mathcal{M}_{2}}$ as

$$
A_{\mathcal{M}_{1}}=\lambda^{2}+\frac{\lambda^{2}}{n}\left(\frac{\lambda^{2}+s^{2} b^{2}}{\lambda^{2}+\sigma^{2} b^{2}}+\frac{s^{2}}{\sigma^{2}}\right)
$$

and

$$
A_{\mathcal{M}_{2}}=\lambda^{2}+\frac{\lambda}{n} \frac{3 s^{2}}{\sigma^{2}}
$$

Note that for $s=0$ we have that

$$
A_{\mathcal{M}_{1}} \approx \lambda^{2}(1+2 / n)<A_{\mathcal{M}_{2}} \approx \lambda^{2}(1+3 / n)
$$

For $s \neq \sigma$, one may however obtain the converse. For example take $b=\lambda^{2}=\sigma^{2}=1$ and $s^{2}=0.1$. Thus the 'simpler' structure \mathcal{M}_{1} may on the average lead to less accurate predictions than those obtained by \mathcal{M}_{2} ! Note that since $\mathcal{M}_{1} \not \subset \mathcal{M}_{2}$, this example is not in contradiction to the parsimony principle.

