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15.3 Prediction Error Methods

Exercise 3.3 (11.1) On the use of cross-correlation test for the LS model.

Consider an ARX model
Alq " ye = B(q " ue + e

T .
with parameters 0 = (ai,...,an,,b1,... bnb) . Assume that the estimate 0 is found by LS, show

that feu(7) = L 30 jupep =0forall 7 =1,...,m.
Solution: The estimate is given by the normal equations

(St )= (3w
t=1 t=1
This gives using ¢; = y; — @tTé that

> e = Z Pt (%Té - yt) =0.
=1 =1
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Exercise 3.4 (11.2) Identifiability results for ARX models.
Consider the system (with Ag, By coprime, and degrees ng,, np, )
Ao(g")Y: = Bo(q Hus + Dy

where D, is zero mean, white noise. Let {y:};+ be realizations of the stochastic process {Y¥;}. Use
the LS in the model structure

Alg Ny = Bla™Hue + &
with degrees n, > nq, and n, > np,. Assume the system operates in open-loop and the input
uz is PE of order ny. Let €(0) denote the random variables modeling the residuals e; for given
parameters § = (A, B). Prove the following results:

(a) The asymptotic cost function E[e¢Z(#)] has a unique minimum.
(b) The estimated polynomials are coprime.
(¢) The information matrix is nonsingular.

Compare with the properties of ARMAX models, see e.g. Example 11.6.
Solution: The prediction error is given as

A(g")Bo(g™") — Aol¢"")B(¢") A(g™h)

€ = A(qil)yt - B(qil)ut = us + D,

Aolg™) Aolq™)
Hence the asymptotic loss function satisfies
2 Alg™)Bola ) = Aoa B 1, o [AY 71?
Ele (0] =E Ao(g™) ut] e [Ao(ql)Dt}
AlgY) 71? A(g!
bl e R
Hence, equality holds only if
EABO - AOBut _0

A
and

4

A() '

The second equation gives A = Ag, the second one thus (By — B)u; = 0. We have thus proven that
the global minimum is unique, and that A, B are coprime.

(¢) According to example 11.6, p435 in the book we have that the information matrix is non-
singular if and only if ¢, = % has a nonsingular covariance matrix. Then a relevant equation
is

alg )y — Blg™Hur =0
which gives

alg ") Bo(g™") — Ao(q_l)ﬁ(q_l)ut n alg™) Dy = 0.
Ao(g™1) Ao(g™1)
Again, when assuming independence of D, and u;, and that for some ¢ Dy # 0 and u; is PE of any
order we have that « = 8 = 0, and hence the information matrix is nonsingular asymptotically (see
also egs. 11.29-11.32) in the book.
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Exercise 3.5 (11.7): An illustration of the Parsimony Principle.
Consider the following AR(1) process:

Yy +aoYi—1 = Dy,

with |ag| < 1 unknown, and where {D;}; is a white noise stochastic process with zero mean and
variance A2, Let us have a realization {y;}?_, of length n of this process. Then assume we fit this
system with the following two candidate models:

Mty +ayi—1 = &

and
My iy + aryi—1 + asyr—2 = €

Let a denote the LS estimate of a in My, and let a;, as be the LS estimate in My. What are the
asymptotic variances /n(a — ag) and /n(a; — ag)?
Solution: Consider the expression for the inverse of a symmetric 2 x 2 matrix with a,c # 0

a b0 1 [d b

c d  ad—bc|—c a]
The asymptotic covariance matrix of the LS estimate of the parameters of an AR model structure
which contains the true system follows the general theory, so we have that

N -1
P, = lim FE[G - a0]2 = (E[i‘/tz])

n— oo

For M5 the covariance is given as

P = lim SE[(a—a)(a—a)"] = ([]E[EY?%Q]J E[EYE%T]} ) i

where we define 79 = E[Y,?] and r; = E[Y;Y;_1]. This means that var(a) = % and vara; = "%,
0 1

hence

7
—~=1-—=5<1
var(ay) s

var(a)

In order to get more insight in the inequality above, note that some simple calculation shows that
for all £ > 0 that

k
2 (—ao)
=TT
Thus .
var(Aa) 1 ag,
var(a)

and thus the closer ag goes to zero, the smaller the difference between the variances. Note also
that for |ag| close to 1, variance var(a) might take very small values, while var(a;) = 55 does not
depend on ag.
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Exercise 3.6 (11.8): The parsimony principle does not necessarily hold for
nonhierarchical models.

Consider the system
S1: Y, =boUi—1 + D,

where {D;} and {U;}; are mutually independent white noise sequences. The variance of D; is \2.
Let {y:} and {u:} be realizations of length n of the process {Y;}, {U:} respectively. Consider the
following two model structures:

My oy +ayi—1 = bug_q +€f
Ma: yp =biug_q + bouy—1 + bou(t — 3) + €7

The parameter estimates are obtained by LS.

(a) Let E[U?] = 02. Determine the asymptotic covariance matrices of the estimation errors

r~ a
Mll (51:§ b—bo
by — b
MQ: 52:Q i)z
bs

where n denotes the number of samples.

(b) Let the adequacy of a model structure be expressed by its ability to express the system’s
output one step ahead, when E[U?] = s? # o2. Then consider

Aty = E [E[(O,) | Oan,]]

and

AM2 =E [E[E?(eMz) | eMz]:|
Determine asymptotically (for n — oo) valid approximations for Axq, and Aag,. Show that
the inequality Ay, < Aaq, does not necessarily hold. Does this principle contradict the

parsimony principle?

Solution: (a) The covariances of the estimates under M; and M are given as
1
e[ o)
100
P=2%10 1 0
0 01
Note that the variance of the estimate of b equals 1/02 in both cases.
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(b) Straightforward calculations give
Ap, =E [E[Dt YaY,, — (h— b)UHﬂ = A2 1 a2(b2s% + %) + (b— b)2s?,
equals
E {)\2 +E {[(/\2 + 52?) % {(5 ?2[))2} ”
Similarly, one has that
Apm, =E [E[Dt — (b1 — D)Us1 — bolUy g — Bgvt_gﬂ = A2+ 5°E [(61 by + B2 4 B2

Inserting the expressions for the estimates of M; and M gives asymptotically valid expressions
for Ay, and Apg, as

A2 A2 42 s

A, = NP4 o (L2505

M T (/\2—1—02172 +02>
and \ 342
—\2 5
Am =X 0T

Note that for s = 0 we have that
Ap, =N (142/n) < Ay, = N2(1+3/n)

For s # o, one may however obtain the converse. For example take b = A2 = ¢2 = 1 and s = 0.1.
Thus the ’simpler’ structure M; may on the average lead to less accurate predictions than those
obtained by Ms! Note that since M; ¢ M, this example is not in contradiction to the parsimony
principle.
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