15.3 Prediction Error Methods

Exercise 3.3 (11.1) On the use of cross-correlation test for the LS model.

Consider an ARX model

\[A(q^{-1})y_t = B(q^{-1})u_t + e_t \]

with parameters \(\theta = \left(a_1, \ldots, a_{n_a}, b_1, \ldots, b_{n_b} \right)^T \). Assume that the estimate \(\hat{\theta} \) is found by LS, show that \(\hat{r}_{eu}(\tau) = \frac{1}{n} \sum_{t=1}^{n} u_t e_t = 0 \) for all \(\tau = 1, \ldots, n_b \).

Solution: The estimate is given by the normal equations

\[
\left(\sum_{t=1}^{n} \varphi_t \varphi_t^T \right) \hat{\theta} = \left(\sum_{t=1}^{n} \varphi_t y_t \right)
\]

This gives using \(e_t = y_t - \varphi_t^T \hat{\theta} \) that

\[
\sum_{t=1}^{n} \varphi_t e_t = \sum_{t=1}^{n} \varphi_t \left(\varphi_t^T \hat{\theta} - y_t \right) = 0.
\]
Exercise 3.4 (11.2) Identifiability results for ARX models.

Consider the system (with \(A_0, B_0 \) coprime, and degrees \(n_{a0}, n_{b0} \))

\[
A_0(q^{-1})Y_t = B_0(q^{-1})u_t + D_t
\]

where \(D_t \) is zero mean, white noise. Let \(\{y_t\}_t \) be realizations of the stochastic process \(\{Y_t\} \). Use the LS in the model structure

\[
A(q^{-1})y_t = B(q^{-1})u_t + \epsilon_t
\]

with degrees \(n_a \geq n_{a0} \) and \(n_b \geq n_{b0} \). Assume the system operates in open-loop and the input \(u_t \) is PE of order \(n_o \). Let \(\epsilon_t(\theta) \) denote the random variables modeling the residuals \(\epsilon_t \) for given parameters \(\theta = (A, B) \). Prove the following results:

(a) The asymptotic cost function \(E[\epsilon_t^2(\theta)] \) has a unique minimum.

(b) The estimated polynomials are coprime.

(c) The information matrix is nonsingular.

Compare with the properties of ARMAX models, see e.g. Example 11.6.

Solution: The prediction error is given as

\[
\epsilon_t = A(q^{-1})y_t - B(q^{-1})u_t = \frac{A(q^{-1})B_0(q^{-1}) - A_0(q^{-1})B(q^{-1})}{A_0(q^{-1})}u_t + \frac{A(q^{-1})}{A_0(q^{-1})}D_t
\]

Hence the asymptotic loss function satisfies

\[
E[\epsilon_t^2(\theta)] = E \left[\frac{A(q^{-1})B_0(q^{-1}) - A_0(q^{-1})B(q^{-1})}{A_0(q^{-1})}u_t \right]^2 + E \left[\frac{A(q^{-1})}{A_0(q^{-1})}D_t \right]^2
\]

\[
\geq E \left[\frac{A(q^{-1})}{A_0(q^{-1})}D_t \right]^2 = E \left[\frac{A(q^{-1})}{A_0(q^{-1})}D_t^2 \right] = E \left[D_t^2 \right]
\]

Hence, equality holds only if

\[
E \left[\frac{AB_0 - A_0B}{A_0} \right] u_t = 0
\]

and

\[
\frac{A}{A_0} = 1.
\]

The second equation gives \(A = A_0 \), the second one thus \((B_0 - B)u_t = 0 \). We have thus proven that the global minimum is unique, and that \(A, B \) are coprime.

(c) According to example 11.6, p435 in the book we have that the information matrix is nonsingular if and only if \(\varphi_t = \frac{\partial \epsilon_t}{\partial \theta} \) has a nonsingular covariance matrix. Then a relevant equation is

\[
\alpha(q^{-1})y_t - \beta(q^{-1})u_t = 0
\]

which gives

\[
\frac{\alpha(q^{-1})B_0(q^{-1}) - A_0(q^{-1})B(q^{-1})}{A_0(q^{-1})}u_t + \frac{\alpha(q^{-1})}{A_0(q^{-1})}D_t = 0.
\]

Again, when assuming independence of \(D_t \) and \(u_t \), and that for some \(t \) \(D_t \neq 0 \) and \(u_t \) is PE of any order we have that \(\alpha = \beta = 0 \), and hence the information matrix is nonsingular asymptotically (see also eqs. 11.29-11.32) in the book.

165
Exercise 3.5 (11.7): An illustration of the Parsimony Principle.

Consider the following AR(1) process:

\[Y_t + a_0 Y_{t-1} = D_t, \]

with \(|a_0| < 1\) unknown, and where \(\{D_t\}_t\) is a white noise stochastic process with zero mean and variance \(\lambda^2\). Let us have a realization \(\{y_t\}_{t=1}^n\) of length \(n\) of this process. Then assume we fit this system with the following two candidate models:

\[\mathcal{M}_1 : y_t + a y_{t-1} = \epsilon_t \]

and

\[\mathcal{M}_2 : y_t + a_1 y_{t-1} + a_2 y_{t-2} = \epsilon_t \]

Let \(\hat{a}\) denote the LS estimate of \(a\) in \(\mathcal{M}_1\), and let \(\hat{a}_1, \hat{a}_2\) be the LS estimate in \(\mathcal{M}_2\). What are the asymptotic variances \(\sqrt{n}(\hat{a} - a_0)\) and \(\sqrt{n}(\hat{a}_1 - a_0)\)?

Solution: Consider the expression for the inverse of a symmetric \(2 \times 2\) matrix with \(a, c \neq 0\)

\[
\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}.
\]

The asymptotic covariance matrix of the LS estimate of the parameters of an AR model structure which contains the true system follows the general theory, so we have that

\[
P_1 = \lim_{n \to \infty} \frac{n}{\lambda^2} \mathbb{E}[(\hat{a} - a_0)^2] = (\mathbb{E}[y_t^2])^{-1}
\]

For \(M_2\) the covariance is given as

\[
P_2 = \lim_{n \to \infty} \frac{n}{\lambda^2} \mathbb{E}[(\hat{a} - \hat{a}_1)(\hat{a} - \hat{a}_1)^T] = \left(\begin{bmatrix} \mathbb{E}[Y_t^2] & \mathbb{E}[Y_t Y_{t-1}] \\ \mathbb{E}[Y_t Y_{t-1}] & \mathbb{E}[Y_{t-1}^2] \end{bmatrix} \right)^{-1}
\]

where we define \(r_0 = \mathbb{E}[Y_t^2]\) and \(r_1 = \mathbb{E}[Y_t Y_{t-1}]\). This means that \(\text{var}(\hat{a}) = \frac{1}{r_0}\) and \(\text{var}(\hat{a}_1) = \frac{r_0}{r_0 - r_1}\), hence

\[
\frac{\text{var}(\hat{a})}{\text{var}(\hat{a}_1)} = 1 - \frac{r_1^2}{r_0^2} \leq 1
\]

In order to get more insight in the inequality above, note that some simple calculation shows that for all \(k \geq 0\) that

\[
r_k = \lambda^2 \frac{(-a_0)^k}{1 - a_0^2}
\]

Thus

\[
\frac{\text{var}(\hat{a})}{\text{var}(\hat{a}_1)} = 1 - a_0^2,
\]

and thus the closer \(a_0\) goes to zero, the smaller the difference between the variances. Note also that for \(|a_0|\) close to 1, variance \(\text{var}(\hat{a})\) might take very small values, while \(\text{var}(\hat{a}_1) = \frac{1}{\lambda^2}\) does not depend on \(a_0\).
Exercise 3.6 (11.8): The parsimony principle does not necessarily hold for nonhierarchical models.

Consider the system
\[S_1 : Y_t = b_0 U_{t-1} + D_t \]
where \(\{D_t\} \) and \(\{U_t\} \) are mutually independent white noise sequences. The variance of \(D_t \) is \(\lambda^2 \). Let \(\{y_t\} \) and \(\{u_t\} \) be realizations of length \(n \) of the process \(\{Y_t\}, \{U_t\} \) respectively. Consider the following two model structures:

\[M_1 : y_t + ay_{t-1} = bu_{t-1} + \epsilon_t^1 \]
\[M_2 : y_t = b_1 u_{t-1} + b_2 u_{t-1} + b_2 u(t-3) + \epsilon_t^2 \]

The parameter estimates are obtained by LS.

(a) Let \(E[U_t^2] = \sigma^2 \). Determine the asymptotic covariance matrices of the estimation errors

\[
\begin{cases}
M_1 : & \delta_1 = \sqrt{\frac{\lambda^2}{n}} \begin{bmatrix} \hat{a} \\ \hat{b} - b_0 \end{bmatrix} \\
M_2 : & \delta_2 = \sqrt{\frac{\lambda^2}{n}} \begin{bmatrix} b_1 - b \\ b_2 \\ \hat{b}_3 \end{bmatrix}
\end{cases}
\]

where \(n \) denotes the number of samples.

(b) Let the adequacy of a model structure be expressed by its ability to express the system’s output one step ahead, when \(E[U_t^2] = s^2 \neq \sigma^2 \). Then consider

\[A_{M_1} = E \left[E[e_t^2(\hat{\theta}_{M_1}) \mid \hat{\theta}_{M_1}] \right] \]

and

\[A_{M_2} = E \left[E[e_t^2(\hat{\theta}_{M_2}) \mid \hat{\theta}_{M_2}] \right] \]

Determine asymptotically \(A_{M_1} \leq A_{M_2} \) valid approximations for \(A_{M_1} \) and \(A_{M_2} \). Show that the inequality \(A_{M_1} \leq A_{M_2} \) does not necessarily hold. Does this principle contradict the parsimony principle?

Solution: (a) The covariances of the estimates under \(M_1 \) and \(M_2 \) are given as

\[
\begin{bmatrix}
P_1 = \begin{bmatrix}
\frac{1}{\lambda^2 + \sigma^2 b^2} & 0 \\
0 & 1/\sigma^2
\end{bmatrix}
\end{bmatrix}
\]

\[
\begin{bmatrix}
P_2 = \begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
\end{bmatrix}
\]

Note that the variance of the estimate of \(b \) equals \(1/\sigma^2 \) in both cases.
(b) Straightforward calculations give

\[A_{M_1} = E \left[E[D_t + aY_{t-1} - (\hat{b} - b)U_{t-1}]^2 \right] = \lambda^2 + \hat{a}^2 (b^2 s^2 + \lambda^2) + (\hat{b} - b)^2 s^2, \]

equals

\[E \left[\lambda^2 + E \left[(\lambda^2 + s^2 b^2) s^2 \left(\frac{\hat{a}^2}{(\hat{b} - b)^2} \right) \right] \right] \]

Similarly, one has that

\[A_{M_2} = E \left[E[D_t - (\hat{b}_1 - b)U_{t-1} - \hat{b}_2 U_{t-2} - \hat{b}_3 U_{t-3}]^2 \right] = \lambda^2 + s^2 E \left[(\hat{b}_1 - b) + \hat{b}_2^2 + \hat{b}_3^2 \right] \]

Inserting the expressions for the estimates of \(M_1 \) and \(M_2 \) gives asymptotically valid expressions for \(A_{M_1} \) and \(A_{M_2} \) as

\[A_{M_1} = \lambda^2 + \frac{\lambda^2}{n} \left(\frac{\lambda^2 + s^2 b^2}{\lambda^2 + \sigma^2 b^2} + \frac{s^2}{\sigma^2} \right) \]

and

\[A_{M_2} = \lambda^2 + \frac{\lambda^2}{n} \frac{3s^2}{\sigma^2} \]

Note that for \(s = 0 \) we have that

\[A_{M_1} \approx \lambda^2 (1 + 2/n) < A_{M_2} \approx \lambda^2 (1 + 3/n) \]

For \(s \neq \sigma \), one may however obtain the converse. For example take \(b = \lambda^2 = \sigma^2 = 1 \) and \(s^2 = 0.1 \). Thus the 'simpler' structure \(M_1 \) may on the average lead to less accurate predictions than those obtained by \(M_2 \)! Note that since \(M_1 \not\subset M_2 \), this example is not in contradiction to the parsimony principle.