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15.4 Recursive Identification

Exercise 4.1 (9.1): Derivation of the real-time RLS algorithm.

Show that the weighted RLS algorithm
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solves in each step the problem
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Solution.
The solution to the least squares problem is given as
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The first of the two terms within the large brackets equals zero, Hence

θ̂t = θ̂t−1 +R−1
t

(yt − ϕtθ̂t−1)ϕt (i)

. Turn now to computing the terms R−1
t

in a recursive manner, since
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and by the matrix inversion lemma, we have
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Using the above expression, we get a computationally more attractive expression for the gain vector
in (i) as
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which concludes the proof.
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Exercise 4.2 (9.2): Influence of forgetting factor on consistency properties of parameter
estimates.

Consider the static-gain system

yt = but + et, ∀t = 1, 2, . . .

where

E[et] = 0, E[eset] = δt,s

and ut is a persistently exciting nonrandom signal. The unknown parameter b is estimated as

b̂ = argmin
b

n�

t=1

λn−t

�
yt − but

�2

where n denotes the number of datapoints, and the forgetting factor λ satisfies 0 < λ ≤ 1. Determine
var(b̂). Show that for n → ∞ one has var(b̂) = 0. Also, show that for λ < 1 there are signals ut for
which consistence is not obtained.

Hint. Consider the signal where ut is constant.
Solution. Simple calculation gives that
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Let λ = 1, then (i) gives

var(b̂) =
1�

n

t=1 u
2
t

.

Since ut is PE, it follows that
�

n

t=1 u
2
t
→ ∞. Hence part 3 of the question follows.

If λ < 1, then consistency of b̂ might be lost. To exemplify this, let ut = 1 for all t = 1, . . . , n.
This is PE of order 1. Then from (i) above we have that

var(b̂) =
(1− λ2n)

(1− λ2)

(1− λ)2

(1− λn)2)
=

(1 + λn)

(1− λn)

(1− λ)

(1 + λ)
→ 1− λ

1 + λ
> 0

if n → ∞. The lack of consistency in such case might be explained as follows For λ < 1, ’old’
measurements are weighted out from the criterion, so that the effective number of samples used in
estimating b̂ does not increase with growing n.
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Exercise 4.3 (9.4): Convergence properties and dependence on initial conditions of the
RLS estimate.

Consider the model
yt = ϕT

t
θ0 + �t

Let the offline weighted LS estimate of θ0 up to instant t be
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�
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T

s

�−1 �
t�

s=1

λt−sϕsys

�

Consider also the online weighted RLS estimates {θ̄s}s
(i) Derive the difference equations forP−1

t
andP−1

t
θ̂t. Solve this equations to find how θ̂t depends

on the initial values θ̂0 and P0 and on the forgetting factor λ.

(ii) Let P0 = ρIn, then prove that for every t where θ̄t exists

lim
ρ→∞

θ̂t = θ̄t

(iii) Suppose that θ̄t is bounded, and suppose that λtPt → 0 as t → ∞. Prove that
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Solution.
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(a) We can also write that
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This is a linear difference equation in P−1
t
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θ̂t, then
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Solving this linear difference equation in xt gives

xt = λtx0 +
t�

s=1

λt−sϕsys.
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Thus we find that
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(b). Let P0 = ρId. Assume θt exists, then
�
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is invertible. We get
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which tends to θ̄t when t → ∞.
(c). If λtPt → 0 when t → ∞, then

θ̂t − θ̄t = Pt

�
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which tends to 0 if t → ∞.

Exercise 4.4 (9.10): An RLS algorithm with a sliding window

.
Consider the parameter estimate

θ̂t = argmin
θ

t�

s=t−m+1

�2
s
(θ)

where �s(θ) = ys − ϕT

s
θ. The number m is the size of the sliding window. Show that such θ̂t can

be computed recursively as
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Solution.
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Set
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Application of the matrix inversion lemma gives that
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It remains to be verified that K1
t
and K2

t
as defined above satisfies the relation stated in the

problem. Let
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Straightforward calculation then gives that
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as desired.
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