
Chapter 1

Computer labs

1.1 Computer lab 1: Least Squares Estimation: do’s and
don’ts

The computerlabs for the course on system identification are mandatory, that is, we need to have
for each of the students registered for the course a small report with the answers to the questions
asked throughout the exercise sessions. Attendance of the computerlabs itself is not insisted on.
The deadline for the computerlab report is at the end of the last lecture of Part I. It is understood
that each student needs to hand in one signed copy, but cooperation is encouraged. A good report
consists of a one page summary containing the findings for each computerlab, perhaps containing
a motivating graph. No code is to be sent in.

1.1.1 Least Squares

At first, let us study how a least squares estimator behaves numerically.

Basis Functions

The first example considers a linear model of a stationary system. That is, set n = 100, and assume
we have n samples {yt}nt=1. We try to ’explain’ these by relating them to possible signals such that
one has for all t = 1, 2, . . . , n that

yt ≈ w1 sin(ω1t) + w1 sin(ω2t), (1.1)

where he frequencies ω1 = 0.1 and ω2 = 0.1 + λ. Assume the observations are generated for
t = 1, 2, . . . , n as

yt = sin(0.1t) + et, (1.2)

where {et}t is white noise with zero mean and unit variance. This is generated using the command
randn in MATLAB. At first, fix λ = 0.1, and let us try to find the parameters b1 and b2 in model
eq. (1.1). This can be done using a least squares optimization problem in θ = (w1, w2) as

θ̂ = argmin
θ=(w1,w2)

1

2

n∑
t=1

(yt − w1 sin(ω1t)− w2 sin(ω2t))
2
. (1.3)

1

2 CHAPTER 1. COMPUTER LABS

This problem is solved by finding a solution θ̂ of θ = (w1, w2)T satisfying the corresponding normal
equations. [∑t

t=1 sin(ω1t) sin(ω1t)
∑t
t=1 sin(ω1t) sin(ω2t)∑t

t=1 sin(ω2t) sin(ω1t)
∑t
t=1 sin(ω2t) sin(ω2t)

] [
w1

w2

]
=

[∑t
t=1 sin(ω1t)yt∑t
t=1 sin(ω2t)yt

]
. (1.4)

or in matrix notation,
Rθ = r, (1.5)

In MATLAB generate the input signals as

>> n=100; U12 = [sin(0.1*(1:n)’) sin((0.1+lambda)*(1:n)’)]

and

>> y = sin(0.1*(1:n)’) + randn(n,1)

The elements can be computed in MATLAB as >> R=U12’*U12 >> r=U12’*y where U12 is an n
by 2 matrix containing the elements of the two input vectors, and y is a vector containing all the
observed values. The solution to the normal equations Rθ = r or θ = R−1r is found by MATLAB
as

>> thetahat = inv(R)*r

other ways to implement this are

1. using the ’backslash’ operator.

>> thetahat = R\r

2. The Penrose pseudo-inverse

>> thetahat = pinv(R)*r

3. The QR decomposition.

>> [U,S]=qr(R); thetahat = S\(U*r)

4. The ’backslash’ operator

>> thetahat = U12\y

Now we can investigate what numerical procedures are good in case we have different values for
λ. If λ goes to zero, then the matrix R becomes ill-conditioned and the very formulation of the
least squares estimation problem runs into problems. Let us see how this works.

1. The condition number of a matrix R is calculated in MATLAB as cond(R). Can you plot the
value of this condition-number in case when γ = 0.1, 0.01, 0.001, 0.0001, 0.00001.

2. Calculate for each of those values the least squares estimation θ̂. Which approach to calculate
this breaks down the earliest, and which one does not?

1.1. COMPUTER LAB 1: LEAST SQUARES ESTIMATION: DO’S AND DON’TS 3

FIR Example

Let us now apply this technique towards a simple dynamical model relating a given input signal
{ut}t to a given output signal {yt}t. Consider the model for all t = 1, 2, . . . , n

yt = b1ut + b2ut−1 + et = (b1 + b2q
−1)ut + et, (1.6)

where n = 100. Here ω = 1 and
ut = sin(ωt), (1.7)

and {et}t is white noise with zero mean and unit variance. This is generated using the command

randn in MATLAB. Then the parameters θ = (b1, b2) can be estimated as θ̂ = (b̂1, b̂2) where θ̂
solves the problem

θ̂ = argmin
θ=(b1,b2)

1

2

n∑
t=2

(yt − b1ut − b2ut−1)
2
. (1.8)

This problem is solved by finding the solution θ to the corresponding normal equations.[∑t
t=2 utut

∑t
t=2 utut−1∑t

t=2 ut−1ut
∑t
t=2 utut

] [
b1
b2

]
=

[∑t
t=2 utyt∑t
t=2 ytut−1

]
. (1.9)

For which values of ω do the estimates run into ill-conditioning problems?

1.1.2 Dynamic Models

Let us do some basic manipulations using the filter and the pzmap command to get an idea on
how to simulate using simple dynamic models.

Let for the sake of this exercise {ut}t be of length n = 100:

>> u = randn(n,1);

Let us now push this signal through a FIR(2) system given as

S1 : yt = (q−1 + 0.5q−1)ut (1.10)

This can be implemented in MATLAB as

b=[0, 1, 0.5]; y=filter(b,1,u);

Let us do the same for the ARX(0,2) system

S2 : (1− 1.5q−1 + 0.7q−2)yt = ut (1.11)

This is implemented as

>> a=[1, -1.5, 0.7]; y=filter(1,a,u);

Then the ARX(2,2)

S3 : (1− 1.5q−1 + 0.7q−2)yt = (q−1 + 0.5q−1)ut (1.12)

is simulated as

4 CHAPTER 1. COMPUTER LABS

>> a=[1, -1.5, 0.7]; b=[0, 1, 0.5]; y=filter(b,a,u);

Finally, we simulate the ARMAX(2,2,2) system given as

S4 : (1− 1.5q−1 + 0.7q−2)yt = (q−1 + 0.5q−1)ut + (1− q−1 + 0.2q−2)et, (1.13)

where {et}t is zero mean, unit variance white noise generated as >> e = randn(n,1). The simu-
lation of the system is performed by

>> a=[1,-1.5, 0.7]; b=[0, 1, 0.5]; c=[1, -1, 0.2];

>> y=filter(b,a,u) + filter(c,a,e);

The previous command is used later quite intensively in order to generate signals useful for our
experiments. Similar tools can also be used to analyze different properties of this model. Herefor
the object idmodel in the system identification toolbox is useful. To see how this works encode the
system S4 in MATLAB as follows

>> m = idmodel(a,b,c)

The properties of this system can be inspected for example using the commands

>> bode(m); nyquist(m); pzmap(m); impulse(m);

All this functions are integrated in the lti viewer called as

>> ltiview(m)

How can you call different views of the given system? Can you modify a parameter of a in S4 in
order to get an unstable system? What poles and zeros (give an exampl) are needed in order to get
a system with large oscillations (slow damping)?

1.1.3 Nonparametric Techniques

Nonparametric schemes are characterized by the property that the results are given as curves,
tables or graphs, rather than in the form of a model. In this section we will study three different
non-parametric methods, namely: transient, correlation and spectral analysis.

In order to illustrate the method, let us consider the following system

(1− 0.8q−1) yt = ut−1 + et, (1.14)

where {et}t is white noise with zero mean and variance σ2 = 1. In the simulations below, 100
experiments are conducted. This is in order to illustrate if systematic error and uncertainty are
characteristic to a method. From one experiment, it might be hard to decide wether the method is
bad, or if we just had a ’bad day’.

Transient Analysis

We begin by illustrating a transient analysis. System S1 with a step input ut = 1(t > 0) is simulated,
and the response is plotted. The task can be done using the MATLAB code which is available as
the file lab13a.m.

Discuss briefly the benefits and drawbacks with the step response analysis. Is it easy to determine
the system dynamics (e.g. time constants, static gain and resonance frequencies) from the step
response?

1.1. COMPUTER LAB 1: LEAST SQUARES ESTIMATION: DO’S AND DON’TS 5

Correlation Analysis

Next we consider a correlation analysis. Let the input {ut}t be white binary noise taking values
ut = ±1 and length n = 100. Then use correlation analysis to estimate the impulse response of
the system for lags τ = 0, 1, 2, . . . , 20. Compare with the true values. This can be done using the
MATLAB file lab13b.m. Discuss briefly the results from the correlation analysis.

Now repeat this task, but using a more low-frequency character. Use the input signal

u′t = a
1

1− 0.8q−1
ut (1.15)

where ut is as defined in the previous exercise, and a =
√

1− 0.82 is such that the variance of {u′t}
equals that of {ut}t. This example is run in MATLAB using the code lab13c.m. It is clear that

in this case the estimate ĥ is severely biased. Why is this so? (Hint: what is implicitly assumed in
the previous exercise).

This problem can be solved by using the Wiener-Hopf technique. This is implemented in the
MATLAB command cra.m. Compare the result which you get with lab13d with the one we have
before.

Spectral Analysis

Next we will use data from the previous exercise and apply a spectral analysis. The resulting
estimates are compare to the ones we had before using a Bode plot. The spectral analysis is
implemented in the command spa which uses by default a Hamming window of length M , see
lab13e. Discuss how the choice of M affects the estimate. Moreover, how is the estimate affected
by the fact that we use a low frequency input u′t? Would there be any difference if we use white
noise instead?

Least Squares Again

Compare the results from the correlation analysis and the spectral analysis with the one obtained
by application of a least squares estimate based on the ARX model

yt = ayt−1 + but−1 + et, ∀t = 1, 2, . . . , n. (1.16)

Give then a concise answer to the following questions using MATLAB simulation.

• What is the objective function?

• Can you write down the corresponding normal equations?

• How would you solve this set of equations in MATLAB?

• What is the impulse response corresponding to the parameters â and b̂ (with a MATLAB
command)?

• Is the Bode diagram close to the true one?

