System Identification, Lecture 2

Kristiaan Pelckmans (IT/UU, 2338)
Course code: 1RT880, Report code: 61800 - Spring 2011 F, FRI Uppsala University, Information Technology 20 January 2011

Lecture 2

- An Example.
- A Model Linear in the Parameter.
- Least Squares Estimation.
- Numerical Techniques.
- Matrix Decompositions.
- Principal Component Analysis.
- Indirect Techniques.

An Example

- Let $\left\{y_{1}, \ldots, y_{n}\right\}=\left\{y_{i}\right\}_{i=1}^{n}$ be a set of observed values. We want to find an as yet unknown parameter $\theta \in \mathbb{R}$ such that

$$
y_{i}=\theta+v_{i} \approx \theta, \forall i=1, \ldots, n .
$$

- Best estimate?

$$
\theta_{n}=\underset{\theta}{\operatorname{argmin}} V_{n}(\theta)=\frac{1}{2} \sum_{i=1}^{n}\left(y_{i}-\theta\right)^{2}
$$

Least Squares Estimate.

- Optimum? Equate the derivative to zero

$$
\frac{d V_{n}(\theta)}{d \theta}=-\sum_{i=1}^{n}\left(y_{i}-\theta\right)=0
$$

Hence

$$
\theta_{n}=\frac{1}{n} \sum_{i=1}^{n} y_{i}
$$

- Given observations $\left\{\left(x_{i}, y_{i}\right)\right\}_{t=1}^{n} \subset \mathbb{R} \times \mathbb{R}$, find the best parameter $\theta \in \mathbb{R}$ such that

$$
y_{i}=x_{i} \theta+v_{i} \approx x_{i} \theta, \forall i=1, \ldots, n .
$$

then LS

$$
\theta_{n}=\underset{\theta}{\operatorname{argmin}} V_{n}(\theta)=\frac{1}{2} \sum_{i=1}^{n}\left(y_{i}-x_{i} \theta\right)^{2}
$$

and equating the derivative to zero gives

$$
\frac{d V_{n}(\theta)}{d \theta}=\sum_{i=1}^{n}-x_{i}\left(y_{i}-x_{i} \theta\right)=0
$$

and hence

$$
\theta_{n}=\frac{\sum_{i=1}^{n} x_{i} y_{i}}{\sum_{i=1}^{n} x_{i}^{2}}
$$

But...

A Model Linear in the Parameters

This method applicable for many models of such class. Other examples of models which are Linear In the Parameters (LIP)

- Linear model

$$
y_{i}=\sum_{j=1}^{d} x_{i j} \theta_{j}+v_{i}=\mathbf{x}_{i}^{T} \theta+v_{i}, \forall i=1, \ldots, n,
$$

where $\mathbf{x}_{i}=\left(x_{i 1}, \ldots, x_{i d}\right)^{T} \in \mathbb{R}^{d}$ and $\theta=\left(\theta_{1}, \ldots, \theta_{d}\right)^{T} \in \mathbb{R}^{d}$. Example ANOVA models.

- Basis functions $\left\{\phi_{j}: \mathbb{R}^{d} \rightarrow \mathbb{R}\right\}_{j=1}^{m}$ and

$$
y_{i}=\sum_{j=1}^{d} \phi_{j}\left(\mathbf{x}_{i}\right) \theta_{j}+v_{i}
$$

Example Splines, Wavelets,

- Nonlinear model

$$
y_{i}=f\left(\mathbf{x}_{i}\right)+v_{i}, \forall i=1, \ldots, n
$$

with unknown $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$. Dictionaries of candidate solutions $\mathcal{F}=\left\{f_{j}: \mathbb{R}^{m} \rightarrow \mathbb{R}\right\}$ where $f \in \mathcal{F}$. Then useful model

$$
y_{i}=\sum_{j=1}^{m} f_{j}\left(\mathbf{x}_{i}\right) \theta_{j}+v_{i}, \forall i=1, \ldots, n
$$

In matrix notation (linear model):

$$
y_{i}=\mathbf{x}_{i}^{T} \theta+v_{i}, \forall i=1, \ldots, n
$$

equals

$$
\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right]=\left[\begin{array}{ccc}
x_{11} & \ldots & x_{1 d} \\
\vdots & & \vdots \\
x_{n 1} & \ldots & x_{n d}
\end{array}\right]\left[\begin{array}{c}
\theta_{1} \\
\vdots \\
\theta_{d}
\end{array}\right]+\left[\begin{array}{c}
v_{1} \\
\vdots \\
v_{n}
\end{array}\right]
$$

denoted as

$$
\mathbf{y}=\Phi \theta+\mathbf{v}
$$

Least Squares Estimation

- Least Squares Objective:

$$
\theta_{n}=\underset{\theta \in \mathbb{R}^{d}}{\operatorname{argmin}} V_{n}(\theta)=\frac{1}{2}(\Phi \theta-\mathbf{y})^{T}(\Phi \theta-\mathbf{y})
$$

- Or

$$
V_{n}(\theta)=\frac{1}{2}\left(\mathbf{y}^{T} \mathbf{y}-2\left(\mathbf{y}^{T} \Phi \theta\right)+\theta^{T}\left(\Phi^{T} \Phi\right) \theta\right)
$$

- Solution by equating derivative to zero:

$$
\frac{d V_{n}(\theta)}{d \theta}=-\left(\Phi^{T} \mathbf{y}\right)+\left(\Phi^{T} \Phi\right) \theta=0
$$

- or solve for θ_{n} (Normal Equations)

$$
\left(\Phi^{T} \Phi\right) \theta_{n}=\Phi^{T} \mathbf{y}
$$

or in vector notation

$$
\sum_{i=1}^{n} \mathbf{x}_{i}\left(y_{i}-\mathbf{x}_{i}^{T} \theta\right)=0_{d}
$$

- If the inverse $\left(\Phi^{T} \Phi\right)^{-1}$ exists.

$$
\theta_{n}=\left(\Phi^{T} \Phi\right)^{-1} \Phi^{T} \mathbf{y}
$$

Figure 1: Orthogonal Projection

Least Squares Estimation, Ct'd

- Suppose 2 inputs exactly the same.
- Suppose an input can be written as a linear combination of the other inputs.
- Suppose inputs 'almost' equal.
- $m \rightarrow n$.
$\rightarrow \Phi$ contains $d(m)$ linear independent vectors.

Numerical Techniques

Given an invertible matrix $\mathbf{A}=\mathbf{A}^{T} \in \mathbb{R}^{m \times m}$ and $\mathbf{b} \in \mathbb{R}^{m}$ in the column space of \mathbf{A}, find a solution $\mathbf{x} \in \mathbb{R}^{m}$ such that

$$
\mathbf{A x}=\mathbf{b}
$$

- Gauss and Gauss-Jordan elimination.
- Conjugate Gradient Methods.
- Triangular Structure. Try to rephrase as $\mathbf{A}^{\prime} \mathbf{x}=\mathbf{b}^{\prime}$ with \mathbf{A}^{\prime} diagonal. Therefor we use the matrix result that any positive definite matrix $\mathbf{A}=\mathbf{A}^{T}$ can be written as

$$
\mathbf{A}=\left[\begin{array}{cccc}
q_{11} & q_{12} & \cdots & q_{1 n} \\
0 & q_{22} & & q_{2 n} \\
\vdots & & \ddots & \\
0 & \cdots & & q_{n n}
\end{array}\right]\left[\begin{array}{ccc}
u_{11} & \cdots & u_{1 n} \\
\vdots & & \vdots \\
u_{n 1} & & u_{n n}
\end{array}\right]
$$

$$
\text { or } \mathbf{A}=\mathbf{Q} \mathbf{U} \text { with } \mathbf{U}^{T} \mathbf{U}=I_{n} \text {. Then }
$$

$$
\mathbf{U A} \mathbf{x}=\mathbf{U b} \Leftrightarrow \mathbf{Q} \mathbf{x}=\mathbf{U b}
$$

and solve by backwards elimination.

Matrix Decompositions

Let $\mathbf{A} \in \mathbb{C}^{m \times n}$ be a matrix.
EVD:

- Define an eigenpair $(\mathbf{x}, \lambda) \in \mathbb{R}^{n} \times \mathbb{R}$ as

$$
\mathbf{A x}=\lambda \mathbf{x}
$$

and $\|\mathbf{x}\|_{2}=1$.

- n different eigenpairs $\left\{\left(\mathbf{x}_{i}, \lambda_{i}\right)\right\}_{i=1}^{n}$

$$
\mathbf{A X}=\mathbf{X} \Lambda
$$

where $\mathbf{X}=\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right) \in \mathbb{C}^{n \times n}$ and

$$
\Lambda=\operatorname{diag}\left[\begin{array}{ccc}
\lambda_{1} & & 0 \\
& \ddots & \\
0 & & \lambda_{n}
\end{array}\right] \in \mathbb{R}^{n \times n}
$$

- If $\mathbf{A}=\mathbf{A}^{*}$, then
(i) All eigenvalues real.
(ii) $\left\{\mathbf{x}_{i}\right\}$ orthogonal, or $\mathbf{X}^{T} \mathbf{X}=\mathbf{X} \mathbf{X}^{T}=I_{n}$.
- If $\mathbf{A}=\mathbf{A}^{*}$, then (Rayleigh coefficient)

$$
\lambda_{i}=\frac{\mathbf{x}_{i}^{T} \mathbf{A} \mathbf{x}_{i}}{\mathbf{x}_{i}^{T} \mathbf{x}_{i}}
$$

Moreover if $\lambda_{1} \geq \cdots \geq \lambda_{n}$

$$
\lambda_{1}=\max _{\mathbf{x}} \frac{\mathbf{x}^{T} \mathbf{A} \mathbf{x}}{\mathbf{x}^{T} \mathbf{x}}
$$

and

$$
\lambda_{n}=\min _{\mathbf{x}} \frac{\mathbf{x}^{T} \mathbf{A} \mathbf{x}}{\mathbf{x}^{T} \mathbf{x}}
$$

- Eigen Value Decomposition (EVD) for matrix $\mathbf{A}=\mathbf{A}^{*}$ is unique when all eigenvalues are distinct:

$$
\mathbf{A U}=\mathbf{U} \Lambda
$$

- Matrix operations, what is \mathbf{A}^{-1} when $\mathbf{A}=\mathbf{A}^{T}$? Formally,

$$
\mathbf{A}^{-1}=\sum_{k=1}^{\infty}\left(I_{n}-\mathbf{A}\right)^{k}
$$

Let $\mathbf{A}=\mathbf{U}^{T} \Lambda \mathbf{U}$ then

$$
\mathbf{A}^{-1}=\sum_{k=1}^{\infty} \mathbf{U}^{T}\left(I_{n}-\Lambda\right)^{k} \mathbf{U}=\mathbf{U}^{T} \operatorname{diag}\left(\lambda^{1}, \ldots, \lambda^{n}\right) \mathbf{U}
$$

using the geometric expansion $\sum_{k=0}^{\infty} a^{k}=\frac{1}{1-a}$ if $|a|<1$ (Geometric Series).

SVD:

- For any $\mathbf{A} \in \mathbb{C}^{m \times n}$, there exist orthonormal matrices $\mathbf{U} \in$ $\mathbb{C}^{m \times m}$ and $\mathbf{V} \in \mathbb{C}^{n \times n}$ and a 'diagonal' matrix $\Sigma=\mathbb{R}^{m \times n}$ such that

$$
\mathbf{A}=\mathbf{U} \Sigma \mathbf{V}^{*}
$$

where $\mathbf{U}^{*} \mathbf{U}=\mathbf{U U}^{*}=I_{m}$ and $\mathbf{V V}^{*}=\mathbf{V}^{*} \mathbf{V}=I_{n}$. The columns of \mathbf{U} are the left singular vectors, the columns of V the right singular vectors. The diagonal elements of Σ denoted as $\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$ the singular values.

- If the matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ is rank r, then

$$
\mathbf{A}=\left[\begin{array}{ll}
\mathbf{U}_{1} & \mathbf{U}_{2}
\end{array}\right]\left[\begin{array}{lllc}
\sigma_{1} & & & 0 \\
& \ddots & & \vdots \\
& & \sigma_{r} & 0 \\
0 & \ldots & 0 & 0
\end{array}\right]\left[\begin{array}{l}
\mathbf{V}_{1}^{*} \\
\mathbf{V}_{2}^{*}
\end{array}\right]
$$

- Optimal rank $s \leq r$ approximation:

$$
\hat{\mathbf{B}}=\underset{\mathbf{B} \in \mathbb{R}^{m \times n}}{\operatorname{argmin}}\|\mathbf{A}-\mathbf{B}\|_{F} \quad \text { s.t. } \quad \operatorname{rank}(\mathbf{B})=s
$$

with $\|\mathbf{A}\|_{F}=\operatorname{tr} \mathbf{A}^{T} \mathbf{A}$ the Frobenius norm, is given by

$$
\hat{\mathbf{B}}=\sum_{j=1}^{s} \sigma_{j} \mathbf{u}_{i} \mathbf{v}_{j}^{T}=\mathbf{U} \Sigma_{(s)} \mathbf{V}^{T}
$$

Principal Component Analysis

Try to find 'hidden structure' in the data.

- Given $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right\} \subset \mathbb{R}^{d}$.
- Try to find $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\} \subset \mathbb{R}^{m}$ such that \mathbf{v}_{i} contains the same 'information' as \mathbf{x}_{i}.
- Optimization problem

$$
\mathbf{w}=\underset{\mathbf{w} \in \mathbb{R}^{n}}{\operatorname{argmax}}\left\|\mathbf{w}^{T} \Phi\right\|_{2} \quad \text { s.t. } \quad \mathbf{w}^{T} \mathbf{w}=1
$$

or

$$
\hat{\mathbf{V}}=\underset{\left\{\mathbf{v}_{j}, \mathbf{w}_{j}\right\}}{\operatorname{argmin}}\left\|\mathbf{X}-\sum_{j=1}^{m} \mathbf{V}_{j} \mathbf{w}_{j}\right\|_{F}
$$

Figure 2: Examples of Principal Component Analysis.

Indirect Techniques

- Solve normal equations.
- Via SVD.

$$
\theta_{n}=\left(\Phi^{T} \Phi\right)^{-1}\left(\Phi^{T} \mathbf{y}\right)
$$

or

$$
\begin{gathered}
\left(\mathbf{V} \Sigma^{T} \mathbf{U}^{T} \mathbf{U} \Sigma \mathbf{V}^{T}\right)^{-1}\left(\mathbf{V} \Sigma^{T} \mathbf{U}^{T} \mathbf{y}\right) \\
=\mathbf{V} \Sigma_{*}^{-2} \mathbf{V}^{T} \mathbf{V} \Sigma^{T} \mathbf{U}^{T} \mathbf{y} \\
=\mathbf{V} \Sigma_{*}^{-T} \mathbf{U}^{T} \mathbf{y}
\end{gathered}
$$

- Via Pseudo-inverse.
- Via QR Decomposition
- In MATLAB

1. >> theta $=\operatorname{inv}\left(\mathrm{X}^{\prime} * \mathrm{X}\right) *\left(\mathrm{X}^{\prime} * \mathrm{Y}\right)$
2. \gg theta $=p i n v(X) * Y$
3. \gg theta $=X \backslash Y$

Conclusions

- Regression (linear in the parameters) models describe a large class of dynamical models.
- The LS estimator is fundamental in SI and can be derived from various perspectives.
- We have assumed that Φ is deterministic. We run into problems when this matrix is a function of stochastic variables (ARX).

