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Lecture 4

e Stochastic Setup.

e Interpretation.

e Maximum Likelihood.

e Least Squares Revisited.

e Instrumental Variables.
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Stochastic Setup

Why:
e Analysis (abstract away).
e Constructive.

Basics:

e Samples w
e Sample space 2 = {w}

e Event A C Q.
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e Rules of probability P : {2} — [0, 1]

1. P(Q) =1,

2. P{}) =0,
3. P(A;UAy) = P(Ay) + P(Ap) for AN Ay = {}

Texts in Staristical Scienoe

Hosam M. Mahmoud

e
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Random variables:

e Function X : ) — R.

e Realizations vs. random variables.

e Expectation:
E[X] ;:/x dF (z) :/x f(z) da

e Expectation of g : R — R.

Elg(X)] = / g(x) dF(z) = / g(x) f(z) do
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e Independence:

E[X1Xs] = E[X;] E[X]

Examples:

e Urn. Sample= Ball. Random variable = Color ball.
e Sample = Image. Random variable = Color/black-white.
e Sample = Speech. Random variable = Words.

e Sample = text. Random variable = Length optimal
compression.
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e Sample = weather. Random variable = Temperature.

e Sample = External force. Random variable = Influence.
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PDF:

e Gaussian PDF determined by 2 moment: mean p and variance

flo) = — eXp<—(Z_M)2)

o
o\ 2T 2072

(or standard deviation o).

e Central Limit Theorem.

e Closed by convolution, conditioning and product.

e Multivariate Normal PDF for x € R?:

1 1 Tw—1/o
) = (%) = —exp (30— )75 = )
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e Let bivariate Gaussian with mean p and variance matrix X as

P(]) =~ (] B )

Then conditional bivariate Gaussian f(X1|Xe = x2) =

N (@, X) where

=+ S12555 (22 — p2)
Y =311 — L1285, Yoy
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Stochastic Processes

e Sequence of random variables indexed by time.
e Joint distribution function.

e Conditional PDF.

e Stationarity.

e Quasi-Stationary.

e Ergodic: different realizations vs. time averages.
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Maximum Likelihood

o |f the true PDF of X were f, then the probability of occurence
of a realisation z of X were f(x).

e Consider a class of such PDFs {fy: 6 € ©}

e Likelihood function: this PDF as a function of an unknown
parameter 0

L(0;x) = fo(x)

e |dea: given an observation z,,, find a model under which this
sample was most likely to occur.

6, = argmax L(0; x,,)
0cO

e Equivalent to

0, = argmax log L(60; x,,)
0cO
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Properties of 6,

e Assume that z,, contains n independent samples.

e Consistent, i.e. 0, — 0y with rate /1 /n.

e Asymptotic normal: if n large

e Sufficient.

e Efficient.

J (\/ﬁ(en - ‘90)) — N(Oa 1)

e Regularity conditions: identifiability:

dx : L(x,0) # L(x,0") < 60 £ 0’
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Interpretations

"The metallurgist told his friend the statistician how
he planned to test the effect of heat on the strength of a
metal bar by sawing the bar into six pieces. The first two
would go into the hot oven, the next two into the medium
oven and the last two into the cool oven. The statistician,
horrified, explained how he should randomize in order to
avoid the effect of a possible gradient of strength in the
metal bar. The method of randomization was applied,
and it turned out that the randomized experiment called
for putting the first two into the hot oven, the next two
into the medium oven and the last two into the cool oven.
"Obviously, we can't do that,” said the metallurgist. "On
the contrary, you have to do that,” said the statistician.”
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Least Squares Reuvisited

e Observations of {y; }7_ ;.
e Model as realizations of random variable Y; with
Y = x%0 + Vi, Vi ~ N(0,1)
with {e;} realizations of {V;}; i.i.d. .
o {x;}" ; and 6§ deterministic.

e Equivalently
fily) = N(y;X;'FQaU)

e Since {V;} indendent

n

Frs--sun) = [ [Ny xT0,0)

1=1
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Maximum Likelihood

O0n = argmax log L(67 Y1, . .- 7yn) = log HN(y7 XzT87 U)
0

1=1

= Ordinary Least Squares (OLS).

n

0, = argmincz (yz — X;TFG)Q

0

1=1

Also when zero mean, uncorrelated errors with equal, bounded
variance (Gauss-Markov).

If noise not independent, but

€1

Cn

Then ML leads to BLUE

~ N (0,,%)

0, = argmine’ X le = (y — X0)'S " (y — X0)
0
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Analysis OLS

Model with {e;} zero mean white noise with E[V?] = A\? and
{0,%1,...,%,} CR?

yi = xibo + €.

OLS: 6,, = argminy ||y — XQHg
Normal Equations: (X1X)§ = X1y,

e Unbiased:
E[0,] = 0
e Covariance:
o 1
E[(0,—6 )T(é’ —6y)] = )\2(XTX)_1 = )\—2 lE:X-X-T
n 0 n 0 n ni:1 19 .

e Objective:
Elly — X0,|l3 = A*(n — d).
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o Efficient. \/n(0,, — 0g) — N(0,I~1) for n — oo.
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Cramér-Rao Bound

e Lowerbound to the variance of any unbiased estimator 6,, to

0.

e Discrete setting: D is set of samples, with {D,,} denoting
the observed datasets.

e Given PDFs fy > 0 over all possible datasets D,, such that

Zf9<Dn) =1

e Given estimator 0,,(D,,) of 8 € © such that V6 € ©

El,(Dn)] = Zen(Dn)f9<Dn) =0
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e Taking derivative w.r.t. 0 gives

{ZDn dfe(Dn) —0

dfg(Dn
ZDn n(Dn) fe(gze ) =1

and hence (D
1= (0~ 0n(Dy)) fefw 2

Dn,

e Combining:
_ Jo(Dn) dfo(Dn)
L=2_ (0= 0u(D.) (7o) (P

(D) (\ffe(Dn)dfe(Dw)

o fo(D,)  df

e Cauchy-Schwarz (al'b < ||a|2||b]|2) gives

1< 300D D) S (W dfa(Dn>)

fo(Dy) do
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Or

with
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Dynamical System

Given the ARX(1,1) system

Yt +ayi—1 = bup_1 + e, V.

where {e;} zero mean and unit variance white noise. Then

application of OLS gives

e Normal equations of § = (—a,b)?

( [ Z?:l yt2—1 2?21 yt—lut—1] ) H — lzgzl Yt—
D i1 Ut—

2?21 Ut—1Yt—1 2?21 u%—1

e Taking Expectations

E [ Z?:l yt2—1 Z?zl yt—lut—l] 0 =F lzgzl Yt—
thl Ut —

2?21 Ut—1Yt—1 2?21 U%—1

1Yt
1Yt

1Yt
1Yt .
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e Approximatively

o= [ ] b -

e |ll-conditioning.
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Instrumental Variables

e LS: mind "  (y; — x;6)?

Z x; (y;i — X;-FQ) = Og4
i=1

e Interpretation as orthogonal projection.

e |dea:

Z Zz (yz — X;FQ) — Od
1=1
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e Choose {Z;} taking values in R? such that

— {Z;} independent from {V;}
— R full rank.

e Example. Past input signals.

(Y - Xw)

Zy

Figure 1: Instrumental Variable as Modified Projection.
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Conclusions

e Stochastic (Theory) and Statistical (Data).
e Maximum Likelihood.
e |east Squares.

e Instrumental Variables.

SI1-2011 K. Pelckmans Jan.-March, 2011 25



