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Overview Part II

1. State Space Systems.

2. Subspace Identification.

3. Further Topics.

4. Identification of Nonlinear Models.

5. Wider View.
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Projects

• Identification of an industrial Petrochemical plant

Challenges:

– Real (IPCOS).
– Control and Kalman Filter.
– MIMO.
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• Identification of an Acoustic Impulse Response

y3

y2

y1

u1

u2

u3

Challenges:

– High Orders but loads of data.
– Mixing structure.
– Demixing.
– Dirac.
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• Identification of Financial Stock Markets

Challenges:

– Stochastic System.
– Trends (inflation).
– Related Stocks.
– Model validation.
– Try to make money (in hindsight).
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• Identification of a Multimedia stream

Challenges:

– Playing with indices.
– Simple system (shifting).
– Reconstruct example.
– Other examples.
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Summary - State Space Systems

• State Space Systems

• Observability - Controllability.

• Realization.

• Stochastic Systems

Least 
Squares

Maximum 
Likelihood

Predicition 
Error 
Methods

Subspace 
Identification
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State Space System

{
xt+1 = Axt + But

yt = Cxt + Dut,
∀t = −∞, . . . ,∞.

with

• {xt}t ⊂ Rn the state process.

• {ut}t ⊂ Rp the input process.

• {yt}t ⊂ Rq the output process.

• A ∈ Rn×n the system matrix.

• B ∈ Rn×p the input matrix.

• C ∈ Rq×n the output matrix.

• D ∈ Rq×p the feed-through matrix.
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The ’state variable’ has different interpretations.

1. Representation of hidden ’state’ of system (physical).

2. Summarization of what to remember from past.

3. Compact representation of information relevant to predict
future.

4. Intersection of past and future.

5. Optimal estimate of the model parameters thus far (RLS).
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State Space System

Advantages over fractional polynomial models

• Closer to physical modeling.

• MIMO systems.

• Noise and Innovations.

• Canonical representation.

• Problems of identiafibility.
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State Space System - ex. 1

From PDE to state-space: the heating-rod system:
z=0 z=L

u(t)
y(t)

Let x(t, z) denote temperature at time t, and location z on
the rod.

∂x(t, z)

∂t
= κ

∂2x(t, z)

∂z2

The heating at the far end mens that

∂x(t, z)

∂z

∣∣∣
z=L

= Ku(t),

The near-end is insulated such that

∂x(t, z)

∂z

∣∣∣
z=0

= 0.
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The measurements are

y(t) = x(t, 0) + v(t),∀t = 1, 2, . . .

The unknown parameters are

θ =

[
κ
K

]

This can be approximated as a system with n states

x(t) =
(
x(t, z1), x(t, z2), . . . , x(t, zn)

)T
∈ Rn

with zk = L(k − 1)/(n − 1).. Then we use the approximation
that

∂2x(t, z)

∂z2
≈ x(t, zk+1)− 2x(t, zk) + x(t, zk−1)

(L/(n− 1))2

where zk = argminz1,,...,zn
‖z − zk‖. Hence the continuous
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state-space approximation becomes

ẋ(t) =
(
n−1
L

)2
κ


−1 1

1 −2 1
. . . . . . . . .

1 −2 1

 x(t) +


0
...

K

u(t)

y(t) =


0
...

1

 x(t) + v(t)

and a discrete Euler approximation

xt+1 − xt = ∆′
(
n−1
L

)2
κ

−1 1

1 −2 1
. . . . . . . . .

1 −2 1

 xt + ∆′


0
...

K

∫∆′ u(t)

yt =


0
...

1

 xt +
∫

∆′ v(t)
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State Space System - ex. 2

Models for the future size of the population (UN, WWF).

Leslie model: key ideas: discretize population in n aging
groups and

• Let xt,i ∈ R+ denote the size of the ith aging group at time
t.
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• Let xt+1,i+1 = sixt,i with si ≥ 0 the ’survival’ coefficient.

• Let xt+1,1 = s0

∑n
i=1 fixt,i with fi ≥ 0 the ’fertility’ rate.

Hence, the dynamics of the population may be captured by the
following discrete time model

xt+1 =


s0f1 s0f2 . . . s0fn

s1 0

0 s2 0
. . .

sn−1 0

xt + ut

yt =
∑n
i=1 xt,i
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Impulse Response to State Space System

What is now the relation of state-space machines, and the
system theoretic tools seen in the previous Part?

Recall impulse response (SISO)

yt =

∞∑
τ=0

hτut−τ ,

and MIMO

yt =

∞∑
τ=0

Hτut−τ ,
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where {Hτ}τ ⊂ Rp×q.

Recall: System identification studies method to build a model
from observed input-output behaviors, i.e. {ut}t and {yt}t.

Now it is a simple exercise to see which impulse response
matrices {Hτ}τ are implemented by a state-space model with
matrices (A,B,C,D):

Hτ =

{
D τ = 0

CAτ−1B τ = 1, 2, . . .
, ∀τ = 0, 1, 2, . . .

Contrast with rational polynomials where typically

hτ ⇔ h(q−1) =
b1q
−1 + b2q

−2 + . . .

1 + a1q−1 + a2q−2 + . . .

Overlapping: consider FIR model

yt = b0ut + b1ut−1 + b2ut−2 + et
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then equivalent state-space with states xt = (ut, ut−1, ut−2)T ∈
R3 becomes 

xt =

0 0 0

1 0 0

0 1 0

xt−1 +

1

0

0

ut
yt =

[
b0 b1 b2

]
xt + et

and x0 = (u0, u−1, u−2)T .
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Controllability and Observability

A state-space model is said to be Controllable iff for any
terminal state x ∈ Rn one has that for all initial state x0 ∈ Rn,
there exists an input process {ut}t which steers the model from
state x0 to x.

A state-space model is said to be Reachable iff for any initial
state x0 ∈ Rn one has that for all terminal states x ∈ Rn there
exists an input process {ut}t which steers the model from state
x0 to x.

The mathematical definition goes as follows: Define the
reachability matrix C ∈ Rn×np as

C =
[
B AB A2B . . . An−1B

]
The State space (A,B) is reachable (controllable) if

rank(C) = n.
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Intuition: if the matrix C is full rank, the image of C equals Rn, and

the superposition principle states that any linear combination of states can

be reached by a linear combination of inputs.

A state-space model is Observable iff any two different initial
states x0 6= x′0 ∈ Rn lead to a different output {ys}s≥0 of the
state-space model in the future when the inputs are switched off
henceforth (autonomous mode).

Define the Observability matrix O ∈ Rqn×n as

O =


C
CA

...
CAn−1


Hence, a state-space model (A,C) is observable iff

rank(O) = n

Intuition: if the (right) null space of O is empty, no two different x, x′ ∈ Rn

lead to the Ox = Ox′.
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Let
u− = (u0,u−1,u−2, . . . )

T

And
y+ = (y1,y2, . . . )

T

Then
x1 ∝ Cu−

and
y+ ∝ Ox1

5 4 3 2 1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time

si
gn

al

 

 
u
y

u    past y+   future

SI-2011 K. Pelckmans Jan.-March, 2011 20



Realization Theory

Problem: Given an impulse response sequence {Hτ}τ , can
we recover (A,B,C,D)?

Def. Minimal Realization. A state-space model (A,B,C,D)
is a minimal realization of order n iff the corresponding C and O
are full rank, that is iff the model is reachable (observable) and
controllable.

Thm. (Kalman) If (A,B,C,D) and (A′,B′,C′,D′) are two
minimal realizations of the same impulse response {Hτ}, then
they are linearly related by a nonsingular matrix T ∈ Rn×n such
that 

A′ = T−1AT

B′ = T−1B

C′ = CT

D′ = D

Intuition: a linear transformation of the states does not alter input-output

behavior; that is, the corresponding {Hτ}τ is the same. The thm states that

those are the only transformations for which this is valid.

SI-2011 K. Pelckmans Jan.-March, 2011 21



Hence, it is only possible to reconstruct a minimal realization
of a state-space model (A,B,C,D) from {Hτ}τ up to a linear
transformation of the states.

In case we only observe sequences {ut}t≥1 and {yt}t≥1, we
have to account for the transient effects and need to estimate
x0 ∈ Rn as well. This is in many situations crucial. The above
thm. is extended to include x0 as well.

Now the celebrated Kalman-Ho realization algorithm goes as
follows:

• Toeplitz-matrix

Hn =


H1 H2 H3 . . . Hn

H2 H3 H4
. . .

Hn H2n+1



=


CB CAB CA2B . . . CAn−1B
CAB CA2B

. . .
CAn−1B CA2n−1B

 = OC
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• The state space is identifiable up to a non-singular matrix
T ∈ Rn×n such that

Hn = OC = OTT−1C

.

• Then take the SVD of Hn, such that

Hn = UΣVT

with U ∈ Rpn×n,V ∈ Rn×nq and Σ = diag(σ1, . . . , σn) ∈
Rn×n.

• Hence a minimal realization is given as{
O′ = U

√
Σ

C′ =
√

ΣV

• From O′, C′ it is not too difficult to extract (A,B,C)
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An Example

Given an input

u = (1, 0, 0, 0, . . . )T

and output signal

y = (0, 1, 1, 2, 3, 5, 8, 13, 21, 34, . . . )T

with system

yt = yt−1 + yt−2, y0 = 0, y1 = u1

or SS with x0 = (0, 0)T as
xt+1 =

[
0 1

1 1

]
xt +

[
1

1

]
ut

yt =
[
1 0

]
xt
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or transfer function

G(z) =
z

z2 − z − 1

Now realization

H5 =


1 1 2 3 5
1 2 3 5 8
2 3 5 8 13
3 5 8 13 21
5 8 13 21 34


Then SVD of H5 gives σ1 = 54.5601 and σ2 = 0.4399, and a
minimal realization is

x′t+1 =

[
1.6179 0.0185

0.0185 −0.6179

]
x′t +

[
0.8550

−0.5187

]
ut

yt =
[
0.8550 −0.5187

]
xt
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Stochastic Systems

Stochastic disturbances (no inputs){
Xt+1 = AXt +Wt

Yt = CXt + Vt

with

• {Xt}t the stochastic state process taking values in Rn.

• {Yt}t the stochastic output process, taking values in Rp.

• A ∈ Rn×n the (deterministic) system matrix.

• C ∈ Rp×n the (deterministic) output matrix.

• {Wt}t the stochastic process disturbances taking values in
Rn.
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• {Vt}t the stochastic measurement disturbances taking values
in Rp.

The stochastic vectors follow a probability law assumed to
follow

• E[Wt] = 0n, and E[WtW
T
s ] = δs,tQ ∈ Rn×n.

• E[Vt] = 0p, and E[VtV
T
s ] = δs,tR ∈ Rp×p.

• E[WtV
T
t ] = δs,tS ∈ Rn×p.

• Wt, Vt assumed independent of . . . , Xt.
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Main questions:

• Covariance matrix states E[XtX
T
t ] = Π:

Π = AΠAT + Q

- Lyapunov, stable.

• Covariance matrix outputs E[YtY
T
t ].
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This model can equivalently be described in its innovation
form {

X ′t+1 = AX ′t + KDt

Yt = CX ′t +Dt

with K ∈ Rn×p the Kalman gain, such that P,K solves{
P = APA + (G−APCT )(Λ0 −CPCT )−1(G−APCT )T

K = (G−APCT )(Λ0 −CPCT )

and

• E[DtD
′
t
T

] = (Λ0 −CPCT )

• P = E[X ′tX
′
t
T

]
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Conclusions

• State-space systems for MIMO - distributed parameter
systems.

• Relation impulse response - state-space models.

• Controllability - Observability

• Kalman - Ho

• Stochastic Systems

SI-2011 K. Pelckmans Jan.-March, 2011 30


