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Overview Part II

1. State Space Systems.

2. Subspace Identification.

3. Further Topics.

4. Identification of Nonlinear Models.

5. Wider View.
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Overview Further Topics

1. Design of Experiments.

2. Closed Loop Identification.

3. Preprocessing.

4. User Choices.
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1. Design of Experiments

1. General.

2. Informative Experiment.

3. Optimal Experiments.

4. Sampling.
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General Considerations

• Purpose and Norms.

• Physical versus Black-box.

• Placement of sensors.

• Manipulate Signals?

• Which signals are to be considered in/out?

• Sampling period?

• Operation Point?

• Length n?
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Problem: for given S ∈ M:

max
M∈{M},u∈u

I(M) s.t. M(u) = S(u)

MINIMAX:

max
M∈{M},u∈u

min
S∈M

I(M) s.t. M(u) = S(u)

where

• The system S to be identified.

• u represents the input signal to be injected into S.

• A class of allowed input signals u.

• The model class M of candidate models.

• The model M ∈M identified (’=’) based on u and S(u)

• The use (information content) of a model M is I(M).
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A common choice of I(M) is based on the covariance of the
parameters of M .

• θ̂ →M .

• θ0 → S.

• Pθ0(u) ∝
[
E
(
dŷt(θ0)
dθ0

)(
dŷt(θ0)
dθ0

)T]−1

.

• α : Rd×d → R measures ’size’ of Pθ0.

Then
min
u∈u

max
θ0∈Θ

α(Pθ0(u))
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For FIR systems of order d, covariance of θ̂ given as

Pθ0(u) =
1

n


r0(u) r1(u) . . . rd−1(u)
r1(u) r0(u)

... . . .
rd−1(u) rd−2(u) r0(u)


−1

• Invertible ⇔ Informative.

• Independent of θ0, θ̂!

• Stochastic Issues.

Crest factor

C1
r (u) =

maxtu
2
t

1
n

∑
tu

2
t

minimum 1.
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Relation to frequency content.

P−1
θ (u) ∝

∫ π

π

H(ω)φu(ω)dω + He

where

• H(ω) denotes how sensitive the system S is to frequency ω

• He ∝
∫ π
−π

1
φe(ω)H

′(eiω)H ′(eiω)Tdω

• So put frequencies of φu on places where H(ω) is large.

• If a parameter is of interest, vary it, look at where changes
bode plot, and put input power there.
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• Choice of function α

– α(P) = tr(PW) (A-Optimal Design)

– α(P) = det(P) (D-Optimal Design)

– α(P) = −λ(P) (E-Optimal Design)

• Optimize over u.

Common choices:

1. White Noise.

2. Filtered White Noise.

3. PRBS.

4. Swept Sinusoids.

5. Periodic vs. aperiodic (PE, Averaging, Transient).
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Intersample D/A signal ut from u.

• ZOH or FOH.

• Trigonometric interpolation (band-limited).

Sampling Period:

• Information content.

• Nyquist.

• Computational.

• Higher model orders and delays.

• 10T
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Length of Experiment:

• Critical mass.

• Averaging.

• Computational.

Prefiltering:

• Low-pass and differencing.

• Antialiasing.

Outliers and Missing variables:

• Unknown ’parameters’

• Averages.

• Norms.
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2. Closed Loop Identification

Consider the system:{
yt = G(q−1)ut +H(q−1)et

ut = −F (q−1)yt + L(q−1)vt

where

• The input ut is determined through feedback.

• F and L are called regulators.

• The signal vt can be the reference signal or noise entering the
regulator.
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Why?

• Many realworld systems have feedback.

• The open-loop system is unstable.

• Feedback is required due to safety reasons.

What

• The input ut depends on past yt (and hence on past et).

• The aim of control is to apply a ut which minimizes the
deviation between yt and a reference signal vt. Good control
often requires a ut of bounded energy.

• SI requires PE, hence substantial energy of ut.

• The frequency content of ut is limited by the true system.
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An example

System:{
yt + ayt−1 = but−1 + et, E[e2

t ] = λ2

ut = −fyt

Model structure:

yt + âyt−1 = b̂ut−1 + ε(t)

Estimate by PEM {
â = a+ fγ

b̂ = b− γ
where γ is any scalar. There is no unique solution, hence the
parameters are not estimated consistently.
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Closed-loop behavior

Open-loop system:{
yt = G(q−1)ut +H(q−1)et

ut = −F (q−1)yt + L(q−1)vt.

Closed loop system:{
yt = (I +GF )−1GLvt + (I +GF )−1Het

ut =
(
L− F (I +GF )−1GL

)
vt − F (I +GF )−1Het.
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Some assumptions

• The open loop system is strictly proper: yt depends only on
past values of the input us or s < t.

• The closed loop system is asymptotically stable.

• The external signal vt is stationary and PE of sufficiently high
order.

• The external signal vt and the disturbance es are independent
∀s, t.
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Prediction Error Methods

• In most cases it is not necessary to assume that the external
signal vt is measurable.

• Gives statistically efficient estimates under mild conditions.

• Computationally demanding.

Notation Ĝ denotes G(q−1, θ̂).
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Different Approaches

• Direct Identification. Feedback is neglected during
identification - the system is treated as an open loop system.

• Indirect Identification. It is assumed that vt is measured
and the feedback law is known. First the closed loop
behavior is modeled, then the open-loop system is identified
by ’subtracting’ the effect of the regulators from this model.

• Joint Identification. The signals ut and yt are both considered
as the outputs of a multivariate system driven by white noise.
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Direct Identification

Model structure: {
yt = Gut +Het

E[e2(t)] = λ2

Use the signals (ut)t and (yt)t

Goal: estimate (SISO)
θ̂ = argminθ VN(θ)

VN(θ) = 1
N

∑N
t=1 ε

2
t (θ)

εt(θ̂) = Ĥ−1
(
yt − Ĝut

)
Question: Identifiability? Desired solution Ĝ = G and Ĥ = H.

SI-2011 K. Pelckmans Jan.-April 2011 19



Consistency: Analyze the asymptotic cost function:

V (θ) = lim
N→∞

VN(θ) = E[ε(t, θ)]

• Will Ĝ = G and Ĥ = H be a global minimum to V (θ)
(system identifiability)?

• Is the solution Ĝ = G and Ĥ = H unique (parameter
identifiability)?
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An Example

System:

yt + ayt−1 = but−1 + et, E[e2(t)] = λ2

Model structure:

yt + âyt−1 = b̂ut−1 + ε(t)

Input

ut =

{
−f1yt for a fraction γ1 of the total time.

−f2yt for a fraction γ2 of the total time.

Then (for i = 1, 2) we get{
yit + (a+ bfi)y

i
t−1 = et

yit + (â+ b̂fi)y
i
t−1 = εit
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which gives

V (â, b̂) = γ1E[ε21(t)] + γ2E[ε22(t)]

= λ2 + γ1λ
2(â+ b̂f1 − a− bf1)2

1− (a+ bf1)2

+γ2λ
2(â+ b̂f2 − a− bf2)2

1− (a+ bf2)2

Consequently
V (â, b̂) ≥ λ2 = V (a, b)

we get

• A global minimum is obtained if â = a and b̂ = b

• Unique minimum?

• Solve V (â, b̂) = λ2

[
1 f1

1 f2

] [
â

b̂

]
=

[
a+ bf1

a+ bf2

]
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• Unique solution if and only if f1 6= f2 (Compare to our
previous example).
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The General Case

• The desired solution Ĝ = G and Ĥ = H will be a global
minimum to V (θ)

• Unique global minimum is necessary for parameter
identifiability (consistency). Consistency is assured by

– Using an external input signal vt
– Using a regulator F (q−1) that shifts between different

settings during the experiment.
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Indirect Identification

• Two step approach

1. Step 1 Identify the closed loop system using vt as input
and yt as output.

2. Step 2 Determine the open loop system parameters
from the closed loop parameters, using knowledge of the
feedback F and L.

• Closed-loop system:

yt = Ḡvt + H̄et

where {
Ḡ = (I +GF )−1GL

H̄ = (I +GF )−1H

• Estimate Ḡ and H̄ from vt and yt with a PEM.

• From the estimated Ḡ and H̄, form the Ĝ and Ĥ
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• Identifiability conditions are the same as for the direct
approach.

• Same identifiability conditions do not imply that both direct
as indirect approach give the same result.

• Drawback of indirect approach: one needs to know vt and
the regulators.
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Joint input-output identification.

• Regard ut and yt as outputs from a multivariable system,
driven by white noise and the reference input vt.{

yt = H11(q−1,θ)et +H12(q−1,θ)vt

ut = H21(q−1,θ)et +H22(q−1,θ)vt

• Innovations model: let zt =
(
yt, ut

)T
and ēt =

(
et, vt

)T
,

then
zt = H(q−1, θ)ēt

with E[ēsē
T
t ] = Λē(θ)δt,s.

• Use PEM to identify θ in H and Λē.
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Properties

• Same identifiability conditions as for the direct method.

• Both system and the regulator can be identified.

• The spectral characterization of vt can be identified;

• the drawback is the computational demand.
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Conclusions

To remember

• Design of Experiments.

• Closed Loop Identification.

• Preprocessing.
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