System Identification, Lecture 12

Kristiaan Pelckmans (IT/UU, 2338)

Course code: 1RT880, Report code: 61800 - Spring 2012 F, FRI Uppsala University, Information Technology

16 Mai 2012

SI-2012 K. Pelckmans Jan.-March, 2012

Overview Part II

- 1. State Space Systems.
- 2. Subspace Identification.
- 3. Further Topics.
- 4. Identification of Nonlinear Models.
- 5. Wider View.

System Identification: A Wider View

- 1. SI = Recovery/Approximation of Systems from Experiments.
- 2. Characteristic: Dynamical Nature, Model Structures.
- 3. Interdisciplinary.

Adaptive Filtering

- 1. What: "Track optimal filter \mathbf{h}_t which purifies the signals." Ex.:
 - (a) Initialize $f_0 = 0_d$, t = 0
 - (b) Predict $f_{t-1}(\mathbf{x}_t)$ and measure feedback $e_t = (y_t f_{t-1}(\mathbf{x}_t))$
 - (c) Update $f_t = f_{t-1} + g(e_t)$
 - (d) Repeat for $t = 1, 2, \ldots$
- 2. Why:
 - Communication.
 - Acoustics.
 - Filters.
- 3. Results:
 - Differential Equation.
 - Algorithmic.
 - Equalization.
 - Efficiency.

• Time-varying.

4. Relevance 2 SI:

- D/A and anti-aliasing filters.
- Equalization and communication.
- Block-adaptive filters and networks.

Numerical Analysis

- 1. What: "Numerical analysis is the study of algorithms that use numerical computation (as opposed to general symbolic manipulations) for the problems of mathematical analysis (as distinguished from discrete mathematics)."
- 2. Why: continuous \rightarrow finite.
- 3. Results:
 - Matrix manipulations.
 - Characterizations.
 - Decompositions.
- 4. Relevance 2 SI:
 - Subspace ID.
 - LAPACK/NUMPACK.
 - Distributed Computation.

Numerical Optimization

1. What:

$$\min_{\theta \in \mathbb{D}} J(\theta)$$
 s. t. $\theta \in \Theta$

- 2. Why: Local/Global?
- 3. Results:
 - LS versus non-LS.
 - Linear versus nonlinear.
 - Convex versus Non-convex.
 - Heuristics.
 - Speed of convergence & Comp. demand.
- 4. Relevance 2 SI:
 - Toolbox and Embedded Systems.
 - Practical and theoretical efficient algorithms.
 - Differential vs. non-differential.
 - Recursive Identification.

- Motor.
- How to interpret numerical/asymptotic result?

Theoretical Computer Science

1. What: "The design and study of algorithms."

2. Why:

- Efficient algorithms.
- Computational and Memory Complexity.

3. Results:

- Sorting, ..., bin-packing.
- P versus NP.
- Randomization.
- Heuristics.
- Reduction to numerical analysis.
- Beyond matrices.

4. Relevance 2 SI:

• Sequential and Online.

- Nonlinear ID.
- Greedy strategies.

Operations Research

1. What: "Operations research is an interdisciplinary mathematical science that focuses on the effective use of technology by organizations."

2. Why:

- WWII.
- Optimal Strategies.
- DP.
- Abstractions (models).

3. Results:

- MINCUT MAXFLOW linear Programming.
- Combinatorial Optimization.
- Matching, Allocation, Scheduling, Paths and Routing.
- Sequential Testing and Quality Control.

4. Relevance 2 SI:

- Combinatorial Models.
- Networked Systems.
- Optimization.

Machine Learning and Data Mining

1. What: "A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E."

$$\mathbf{y} \approx f(\mathbf{X})$$

2. Why:

- Nonlinear models and predictors.
- How to characterize and relate many different tools?

3. Results:

- Toolboxes (SVM, splines, Decision trees).
- ML matured → parameters 2 functions.
- Algorithms.
- Complexity Control and Generalization.

• Theoretical ML vs. Applications (DARPA).

4. Relevance 2 SI:

- Off-the-shelve tools.
- Generalization Analysis.
- MATLAB, WEKA, Python, ...

Statistical Inference

1. What: "Estimation and inference of Statistical models generating the data, from data." ex.

$$X \sim \mathcal{N}(0_n, \Sigma)$$

ML:

$$\hat{\Sigma} = \operatorname*{argmax}_{\Sigma} L(X_n; \Sigma)$$

- 2. Why:
 - Stochastics as an abstraction of irrelevant, individual effects.
 - Optimal model → Optimal predictor?
 - Averaging behavior.
- 3. Results:
 - Stochastic Processes, IID.

- Statistical Models.
- ML.
- CLT and Cramer-Rao.
- Hypothesis Testing.
- Finite sample results.
- Beyond ML: Penalized ML, U-, L-, M-, V-, R-statistics.

4. Relevance 2 SI:

- Timeseries.
- Often nonlinear in parameters.
- Often Newton-Raphson.
- Inference and covariance.
- R, SAS, Python, stata, SPSS, Matlab, Excel.
- Data visualization tools.

Information Theory

1. What: "Modeling as communication - a model as summary of the data."

2. Why:

- Choice of model subjective.
- Objective guidelines?
- Fundamental limits.

3. Results:

- Shannon's source coding theorem $|com(X)| \ge h(X)$
- \bullet Shannon's noisy source coding theorem $|\mathrm{com}(X)|/|X| \geq \frac{C}{1-h(X)}$
- Entropy, KL, MI.
- MDL.
- rate Distortion theory.

4. Relevance 2 SI:

- Compression.
- Foundation to Stochastic.
- Gambling, Investment and Universal rules.

Econometrics and Financial Matters

- 1. What: "Econometrics studies statistical properties of econometric procedures"
- 2. Why:
- 3. Results:
 - Noise and correlations.
 - Jumps and outliers.
 - Variance Stabilizing transformations.
 - Gambling and Maximal profit strategies.
 - Stochastic Calculus (\hat{I} to)
- 4. Relevance SI:
 - Timeseries modeling.
 - Preprocessing.
 - Continuous time.

Nonlinear Systems

1. What: "Study of the dynamics arising from nonlinear systems."

2. Why:

- Models \rightarrow I/O Behavior.
- I/O Behavior ? models?

3. Results:

- Oscillators.
- Bifurcation Diagrams.
- Long range prediction.
- Stability and Limit Cycles.

4. Relevance SI:

- Diagnostics to Identified Nonlinear model.
- Observed behavior → Model structure?

Phase

Conclusions

To remember

- Least Squares.
- Extensions.
- Toolbox.
- Tuning.