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Lecture 4

e Stochastic Setup.

e Interpretation.

e Maximum Likelihood.

e Least Squares Revisited.

e Instrumental Variables.
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Stochastic Setup

Stochastic Process:

e Stationary.

e Ergodic.

e |ID.

e Quasi-Stationary.

e \White Noise.
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Maximum Likelihood

o |f the true PDF of X were p, then the probability of occurrence
of a realization x of X were p(z).

e Consider a class of such PDFs {py : 0 € O}

e Likelihood function: this PDF as a function of an unknown
parameter 0

L(0;x) = po(x)

e |dea: given an observation Y}, find a model under which this
sample was most likely to occur.

0,, = argmax L(y;, 0)
0cO

e Equivalent to

0,, = argmax log L(y;; 0)
0cO
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Properties of 6,

e Assume that z,, contains n independent samples.
e Consistent, i.e. 0, — 0y with rate /1 /n.

e Asymptotic normal: if n large

p (Vn(0n — 6)) = N(0,1)

e Sufficient.
e Efficient.
e Regularity conditions: identifiability:

dx : L(x,0) # L(x,0") < 60 £ 0’
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Interpretations

"The metallurgist told his friend the statistician how
he planned to test the effect of heat on the strength of a
metal bar by sawing the bar into six pieces. The first two
would go into the hot oven, the next two into the medium
oven and the last two into the cool oven. The statistician,
horrified, explained how he should randomize in order to
avoid the effect of a possible gradient of strength in the
metal bar. The method of randomization was applied,
and it turned out that the randomized experiment called
for putting the first two into the hot oven, the next two
into the medium oven and the last two into the cool oven.
"Obviously, we can't do that,” said the metallurgist. "On
the contrary, you have to do that,” said the statistician.”
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Least Squares Reuvisited

e Observations of {Y;} ;.
e Model as realizations of random variable Y; with
Y =x70+ Vi, Vi ~ N(0,1)
with {V;}; i.id. .
o {x;}" ; and 6 deterministic.

e Equivalently
p(yi) = N(yi; x; 0,0)

e Since {V;} independent

Py, yn) = [ [N (wis %] 6, 0)
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e Maximum Likelihood

0, = argmax 10gL((9, Y1, ... 7y'n) = log HN(yZa XzT97 J)
¢ i=1

e = Ordinary Least Squares (OLS).

n

0, = argmincz (yz — X;TFG)Q

0 i—1

e Also when zero mean, uncorrelated errors with equal, bounded
variance (Gauss-Markov).

e If noise not independent, but

R
| ~N(0,,%)

Yn

Then ML leads to BLUE

0, = argmine’ X le = (y — X0)'S " (y — X0)
0
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Analysis OLS

Model with {V;} zero mean white noise with E[V?] = A\? and
{0,%4,...,%,} CR?

Y = x,00 + V.

OLS: 6,, = argminy ||y — X@H; :
Normal Equations: (X1'X)§ = X1y,

e Unbiased:
E[0,] = 0
e Covariance:
o 1
E[(0,—6 )T(é’ —6y)] = )\2(XTX)_1 = )\—2 lE:X-X-T
n 0 n 0 n ni:1 19 .

e Objective:
Elly — X0,|l3 = A*(n — d).
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o Efficient. \/n(0,, — 0g) — N(0,I~1) for n — oo.
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Gauss-Markov Theorem

For model:
Y@-:X;FHO—FVZ-, Vi=1,...,n

|f:
e ElV;]=0foralli=1,...,n
e E[V =0 <ocforalli=1,...,n
o E[V;V,]=0foralli#j5=1,...,n
Then the LS 6,, is
e Unbiased: E[d,] = 6q.

e Best: E||6,, — 0p]|? is smallest amongst the class of all linear
unbiased estimators.
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Cramér-Rao Bound

e Lowerbound to the variance of any unbiased estimator 6,, to
6.

e Discrete setting: D,, is set of samples.

e Given PDFs py > 0 over all possible datasets D,, such that

> po(D

e Given estimator 6,,(D,,) of 8 € © such that VA € ©

— Z 01(Dn)pe(Dr) = 0

e Taking derivative w.r.t. 6 gives

{Z’Dn dp@(Dn) — 0

d Dn
Sp, On(D,) 20 Pn) —
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and hence

e Combining:

gm0 (32) (4

1= 3" (6a(Dn) — 0) \/po(Dn) ( fo?g);) dpe;;m)

e Cauchy-Schwarz (al'b < ||a|2||b]|2) gives

1 <> (0= 0,(Dn)) po(Dn) Y (\/mdpe(l%))

pQ(Dn) do
Or
EG[Q _ en(Dn)]Q Z ILQ)
with D) ,
dpg Dn 1
1(0) =FE
0= | P )
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Dynamical System

Given the ARX(1,1) system
Yi+aYi—1 = bup—1 + V4, V.

where {V;} zero mean and unit variance white noise. Then
application of OLS gives

e Normal equations of § = (—a,b)?

( [ Z?:l }/t2—1 ZIL:]_ }/t—lut—ll ) 9 _ [2?21 }/t—li/t]
> g Ue1Yi D et Uiy Do Ut—1Ye|

e Taking Expectations

R [ S YA X Yt_lut_ll o_m [zgzl YHY;] |
Dt Ut—1Yi—1 D i—1 up 4 Yo Ut—1Yy
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e Asymptotically (if lim,, )

9~ [E[Yf] E[Y%ut]ll [E[Y;Yt_l]

EfuY;] Ep] E[Ytut_ﬂ]:R_lr'

e lll-conditioning.

e Unbiased iff.
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Instrumental Variables

e LS: mind " (V; —x]6)?

in (Y; — X?@) = 04
i=1

e Interpretation as orthogonal projection.

e |dea:

> Zi (Yi—x]0) = 0q
1=1
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e Choose {Z;} taking values in R? such that

— {Z;} independent from {V;}
— R = X*Z full rank.

e Example. Past input signals.

(Y - Xw)

Zy

Figure 1: Instrumental Variable as Modified Projection.
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Conclusions

e Stochastic (Theory) and Statistical (Data).
e Maximum Likelihood.
e |east Squares.

e Instrumental Variables.
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