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Lecture 7

e Recursive Identification Methods.
e Recursive Least Squares.

e Tracking case.

e Variations.

e Common themes.
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Why?

Why is recursive identification of interest?

e Online estimation.
e Adaptive systems.
e [ime-varying Parameters.

e Fault-Detection.
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How?

How do we estimate time-varying parameters?

e Update the model regularly (once every sampling instant)
e Make use of previous calculations in an efficient manner.

e The basic procedure is to modify the batch (offline) method,
e.g. OLS, PEM.
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Desirable Properties

e Fast convergence.
e Consistent estimates (time-invariant case).
e Good tracking (time-varying case).

e Computationally simple (perform all calculations during one
sampling interval).
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Trade-offs

No free lunch. The design is always based on trade-offs, such
as

e Convergence vs. Tracking.

e Computational complexity vs. accuracy.
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Recursive Least Squares Method (RLS)

t

0, = argmin V;(0) V4(9) = Z €
¢ k=1

where € =y — 7. 0. The solution reads as:
A o1
where

t t
R: = Z sowf, 'y = Z PLYk
k=1 k=1

e The criterion function V;(6) changes every step, so does 0,

e A 'simple’ recursive implementation of 6,7
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RLS, Ct'd

Derivation:
t—1
0 =R, 'r, =Ry’ (Z PsYs + %m)
s=1

= Rt_lRt—lét—l + Rt_l(%yt)-

And since R;_; = R; — ¢yl , one has

= Rt_1 (Rt — gatsof) 01+ Rt_l(%yt)
— 0, | — R_lsﬁt%gTét—l + Rt_l(%yt)

= R; ‘o (yt — SOtTét—l)
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RLS, Ct'd

Matrix Inversion Lemma: (assume symmetric, invertible Z €
Ran’ = Rn)

7. =7+ zz"

Question: can we write Z;l in terms of Z—17

Z 1T 71
1+ 217-12

—1 —1
Z7l =27
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71T 71
7 Nl z-1 -
(Z+ 22 )( 1—|—zTZ_1z>
Z 1T 71 71T 71
_ In_Z TZ 1 T
(1 —I—ZTZ—lz) T2 (z27) (1 —|—ZTZ_1Z>

Tz—l Tz—l Tz—l
+< 2z )(1+ZZ_1Z>_<ZZ 2z )
_I 4 2zl 771 (22771 — 22l 77122t 771

1421712 14217212
Now, note that (2! Z712) is a scalar, and thus

_ In—l-( 22t 71 ) (ZTZ—1Z)_((ZTZ_lz)ZzTZ_l) _ I

1+ 2T7-12 1+ 2T7-12

Q.E.D.
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RLS, Ct'd

Recursive algorithm

e At time ¢t = 0, choose initial values of 8(0) and P(0)

e For any t > 0, compute ¢; and do

(0; = 0,1 + Kyes
€ = Yt — Pibi_1
) K; = PtSOt

Pi_1pt0f Pry
Py = P,y - Tl
(¢ t=1 1+ Py_1¢4
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Tracking

How to handle time-varying parameter 0y +?

e Postulate a time-varying model for the parameters. Typically,
let the parameters vary according to a random walk and use
the Kalman filter as an estimator.

e Modify the cost-function so that we gradually 'forget’ old
data.

t

0y = argmin V;(0), st. Vi(0) = > B(t, k)e;.
0 k=1

where the weighting function [ satisfies:

Bt k) = MB(E—1,k), 0 < k <t
B(t,t) =1
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A common choice is to let A\; = A with given 'forgetting
factor 0 < A < 1, such that

B(t, k)= A\F

In case A = 1, OLS is implemented.
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Weighted RLS

Algorithm

e At t = 0, choose initial values of éo and Py.

e For each ¢t > 0, do

(ét = ét—l + K
€t = Yp — Pibi—1
K = Pt%

P 1pt0i Pry
Py = L [Py — Sl
Y t=1 A+l P10

_/\

\
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Initial Conditions

e 0y is the initial estimate (prior).

e View Py as the covariance matrix of the initial parameter
vector:

— Py are covariance matrices, must be positive definite.

— Choose Py = pl,

— If p large, then large initial response. This is good when
initial estimate uncertain.
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Forgetting Factor

The forgetting factor \ will set the "tracking capacity’.

e Consistent if A = 1.
e )\ small: old data forgotten fastly, good tracking.

e )\ small: the algorithm is sensitive to noise - bad convergence.

e The memory constant is 79 = ﬁ

The choice of A is consequently a trade-off between tracking
capability, and noise sensitivity. A typical choice is A €
0.95,0.99[. Also, it is common to let \; tend exponentially
to one (why?)

Ae = 1= Xg(1 = A(0))
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The Kalman filter

Consider the (MISQO) system

Tir1 = Fay + Gug + vy
y: = Hry + ¢4

where v; and e; are independent white noise sources with E[e?] =
Ry and E[vwl] = Ry.

The optimal predictor of the state variable x;,1 based on x;
and the output observation y; is given by the Kalman filter.

(..
Ti11 = Foy + Gup + Kiy 1 (yer1 — Hay)
_ Fp;HT
§ Btr1 = Ry+HPHT . .
_ T FP:H HP.F
\Pt—l-l - FPtF Ro+HP,HT T Rl
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Recursive Least Squares. model:

then

\

y

Orr1 = 0¢ + vy
Yt = 90th + €4

. . -
0, =01+ K, (yt — ¥} 9t—1)
Kt — Pt—l@?

Ro+o! Py_104

Pt—l%tW?Pg_l
P. =P, | — + R
t t=1 R2+¢?Pt—190t 1

Let B> = 1 for simplicity. The tracking capacity is characterized
by the covariance matrix R; € R"*".

e View R as a design variable.

e Let R be a diagonal matrix.

e Large elements of Ry imply large parameter variations, and

vice versa.

e The Kalman filter gives higher flexibility than the weighted

RLS.
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Recursive IVM

As for LS, it is straightforward to find a recursive version of
the IV method.

() (g

which becomes for all ¢ > 0:

(ét = ét—l + Kyeq
€ = Yt — Pibi—1
< Kt = PtZt

P 12101 Pi_q
Py = P,y - Tl
¢ t=1 14+ P12

Some comments:

e The influence of the design variables Py, éo Is the same as for
RLS.
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e RIV gives consistent estimates for (time-invariant) of A(q™1!)
and B(q~') in an ARMAX model. Consistency can be

obtained even for 'colored’ noise.

e Design of the 'instruments’ recursively.
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Recursive PEM

To derive a recursive PEM, the following cost function is
defined t
1 _
‘/t(e) = 5 Z )\t kEZ(k’ 9)
k=1
It is not possible to derive an exact algorithm, and we need some

kind of approximation:
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Assume that ét_l minimizes V;_1, and that the minimum of
Vi is not (too far) from 6;_1, then using a second order Taylor
approximation one gets:

Vi(6) ~ Vi(Bs—1) + V/(B,—1)(0 — By_1) . .

1 . . R
+ 5(9 — 9t—1)TVtN(9t—1)(9 — 9t—1)
If one minimizes this with respect to #, one gets
A A (N -1 (N
0= b2~ (V/(0))  V{(Bin)
where

o V;’(@At_l) is the gradient of V; in 6;_,

o Vt”(ét_l) is the Hessian of V; in 6;_4
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Let the choice A
. 8€(t, 9,5_1)
Py = 5

The actual implementation depends on the model structure
(ARMAX).

Algorithm

e At t = 0, choose initial values of éo and Py.

e Foreacht >0, do

(ét = ét—l + K¢y
K: = Py

Pi_1913f Py_g
Py = 1 [Py — Bt
DY t=1 A+l Py

N\

\
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Approximate Algorithms

The structure of RPEM is directly related to Newton-Raphson
's algorithm

2 2 7N 1 /(N
0 =01~ (V/'(0r))  V/(0in)

) —1
e Computation of Hessian (‘/7;”(97:—1)> is demanding.

e Approximate algorithms are less demanding. For instance,
ignoring the Hessian altogether gives

‘92 — 97/5—1 - %V;s/(ét—l)

gives te gradient descent, steepest descend and Least Mean
Squares algorithm.
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Recursive Pseudo-linear Regression

Consider the ARMAX model
A(g "y = Blg Due + Clg ey
Rewrite model as
( T
Yt = ¢ 0+ eq

T_ A A
Py = (_yt—17°--7ut—17'°-7et—17---76t—nc>
T

_/\

\9: (@1,...,ang, b1,... by, C15. .. Cn)

Comparison between RPEM and RPLR

e Similar computational demand.

e The RPEM converges, while this is not assured for the RPLR
(this depends on Cy(g™1).
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e In some cases, the RPLR has a faster/better transient
behavior compared to RPEM.
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Common Problems for Recursive Identification

e Lack of PE.
e Estimator windup.

e P; becoming indefinite.
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Excitation

Just as for the batch-case, it is important that the input
is PE of sufficiently high order. This applies during the whole
identification period.
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Estimator Windup

Often, some periods of the identification experiment exhibit
poor excitation. This causes problems for the identification
algorithms. Consider the situation where ¢; = 0 in the RLS

algorithm, then
0r = 0t—1
P, =P,

e Notice that # remains constant during this period,

e ... and P increases exponentially with time when A < 1.

When the system is excited again (y; # 0), the estimation gain
K will be very large, and there will be an abrupt change in the
estimate, despite the fact that the system has not changed. This
effect is referred to as 'estimator windup'.
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P; becoming indefinite.

P, are covariance matrices, so they must be symmetric
and positive definite (invertible). Rounding errors however may
accumulate and make P;, and the algorithm may come in
trouble. A solution is based on the observation that any positive
matrix can be written as the product of two arbitrary matrices
(here S;), or

P, =S,S!

One can then rederive the algorithm in terms of the recursion
on such an S; (Potter's square root algorithm)
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Conclusions

e In practical scenarios, one often needs recursive identification
(time-varying, online identification, fault detection).

e Both the OLS and IVM can be cast in recursive forms, the
PEM can only be approximated by a recursive algorithm.

e The properties of the online methods are comparable to the
offline case.

e Tracking capabilities can be incorporated by using a forgetting
factor, or by modeling the parameter variations explicitly.

e Trade-offs between convergence speed and tracking
properties, as well as between computational complexity and
accuracy.

e In practice, one uses simplifications to make the recursion (i)
cheaper, and (ii) more robust.

SI1-2012 K. Pelckmans Jan.-March, 2012 30



