
Chapter 4

Nonparametric Techniques

”Which experiments reveal structural properties of the studied system?”

Now let us look at a converse problem. Here we do not look at the properties of the assumed
model class, but we compute such properties based on experiments carried out on the studied
system. In general, such methods are not tied to a specific (parameterized) model, but neverthe-
less embody a description of the system. Such method have the denominator ’non-parametric’ or
’distribution-free’. They often come in the forms graphs, curves, tables or other intuitive represen-
tations, and give as such structural information of the system. Their use is often found in

(Preprocess) Indicate important e↵ects present in the studied system.

(Model class) Suggest a suitable class of parametric models which can be used to capture such e↵ects.

(Validate) Check whether the identified model behaves similarly than the actual system.

4.1 Transient Analysis

A first approach is to inject the studied system with a simple input as a pulse or a step, and to
record the subsequent output of the system. This gives then an impression of the impulse response
of the studied system. Let us look further into the pros and cons of this strategy. Formally, let the
following input signal {ut}t be injected to the system H

ut =

(
K t = 0

0 else.
(4.1)

Then, if the system could be described exactly (i.e. without any e↵ect of unknown disturbances)
as H(q�1) = h

0

+ · · ·+ h⌧q�⌧ + . . . , then the output of the system becomes

yt = H(q)ut = K

(
ht t � 0

0 else.
(4.2)

So conversely, if one knows that the system follows very closely an LTI description H(q�1) =
h
0

+ · · · + h⌧q�⌧ + . . . , the di↵erent unknowns {h⌧}⌧ can be observed directly when injecting the
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4.2. FREQUENCY ANALYSIS

studied system with a pulse signal as in eq. (4.1). The pros of this approach are that (i) it is
simple to understand or to (ii) implement, while the model need not be specified further except
for the LTI property. The downsides are of course that (i) this method breaks down when the LTI
model fits not exactly the studied system. Since models serve merely as mathematical convenient
approximations of the actual system, this is why this approach is in practice not often used. (ii) It
cannot handle random e↵ects very well. (iii) such experiment is not feasible in the practical setting
at hand. As for this reason it is merely useful in practice to determine some structural properties
of the system. For example consider again the first order system as in the previous example, then
a graph of the impulse response indicates the applicable time-constants and gain of the system.

Similarly, consider the step input signal {ut}t defined as

ut =

(
K t � 0

0 else.
(4.3)

Then, if the system could be described exactly (i.e. without any e↵ect of unknown disturbances)
as H(q�1) = h

0

+ · · ·+ h⌧q�⌧ + . . . , then the output of the system becomes

yt = H(q�1)ut = K

(Pt
⌧=0

h⌧ t � 0

0 else.
(4.4)

or equivalently

yt � yt�1

= K

(
h⌧ t � 1

0 else.
(4.5)

System
Input Signal {ut} Output Signal {yt}

(a) (b)

Figure 4.1: (a) A Block Representation of a system. (b) An impact hammer used for modal analysis
of bridges and other large constructions.

4.2 Frequency Analysis

As seen in the previous chapter, an LTI is often characterized in terms of its reaction to signals
with a certain frequency and phase. It is hence only natural to try to learn some properties of the
studied system by injecting it with a signal having such a form. Specifically, let {ut} be defined for
t = . . . ,�1, 0, 1, . . . as

ut = a sin(!t). (4.6)

where a > 0 is the gain of the signal. Then as seen in the previous chapter the corresponding
output of the system H is given as

yt = K sin(!t+ �), (4.7)
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4.3. A CORRELATION ANALYSIS

where (
K = a|H(ei!)|
� = argG(ei!).

(4.8)

Note that normally the phase � will be negative. By measuring the amplitude a,K and the phase
� for for given !, one can find the complex variable H(ei!) from (4.8). If repeating this procedure
for a range of frequencies !, one can obtain a graphical representation of H(ei!). Such Bode
plots (or Nyquist or related plots) are well suited for the design and analysis of automatic control
systems. The procedure described above is rather sensitive to disturbances. This is not di�cult to
understand. If one has disturbance terms with Laplace transform E(s), one gets

Y (s) = H(s)U(s) + E(s). (4.9)

Then when injecting the system with a signal {ut} as in eq. (4.6) one gets the output signal {yt}
where

yt = K sin(!t+ �) + et, (4.10)

and due to the presence of noise it will be di�cult to extract good estimates of K and � from those
signals.

4.3 A Correlation Analysis

The above ideas are taken a step further into a correlation analysis. But instead of using simple
input signals, the system is injected with a random signal {ut}t which has zero mean or

E[ut] = lim
n!1

1

n

nX

i=1

ut, (4.11)

which has finite values. A formal definition of such white noise sequence is given in Chapter 4,
but for now it is su�cient to let the expectation E[·] denote an limit of an average, or E[ut] =
limn!1 1

n

Pn
t=1

ut. Then the output which is recorded at the output of the system

yt =
1X

⌧=0

h⌧ut�⌧ . (4.12)

When taking multiplying both sides by ut0 for any t0, and taking expectations one gets

E[ut0yt] = E
" 1X

⌧=0

h⌧ut�⌧ut0

#
=

1X

⌧=0

h⌧E [ut�⌧ut0 ] . (4.13)

Summarizing this for all t, t0 and canceling the cross-terms gives the linear system

2

6666664

ruy(0)
ruy(1)

...
ruy(⌧)

...

3

7777775
=

2

6666666666664

ruu(0) ruu(1) ruu(2) . . . ruu(⌧) . . .
ruu(1) ruu(0) ruu(⌧ � 1) . . .
ruu(2)

...
. . .

ruu(⌧) ruu(⌧ � 1) ruu(0) . . .
...

3

7777777777775

2

6666664

h
0

h
1

...
h⌧

...

3

7777775
(4.14)
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4.4. SPECTRAL ANALYSIS

where

ruu(⌧) = E[utut�⌧ ] = lim
n!1

1

n

nX

i=1

utut�⌧ . (4.15)

and

ruy(⌧) = E[ytut�⌧ ] = lim
n!1

1

n

nX

i=1

ytut�⌧ . (4.16)

Since this limit cannot be computed explicitly in practice, one settles for working with the estimates

r̂uu(⌧) =
1

n

nX

i=1

utut�⌧ . (4.17)

and

r̂uy(⌧) =
1

n

nX

i=1

ytut�⌧ . (4.18)

Secondly, rather than solving the infinite system (4.19), one solves the corresponding finite linear
system for appropriate m > 0 given as

2

6664

r̂uy(0)
r̂uy(1)

...
r̂uy(m� 1)

3

7775
=

2

6666666664

r̂uu(0) ruu(1) r̂uu(2) . . . r̂uu(m� 1)
r̂uu(1) ruu(0) r̂uu(m� 2)
r̂uu(2)

...
. . .

r̂uu(m� 1) ruu(m� 2) r̂uu(0)

3

7777777775

2

6664

h
0

h
1

...
hM

3

7775
(4.19)

in order to get an idea about {h⌧}n⌧=0

. Those equations are known as Wiener-Hopf type of equations.
This technique is related to the Least Squares estimate and the Prediction Error Method in Chapter
5.

4.4 Spectral Analysis

Now both the correlation technique and the frequency analysis method can be combined into a
signal nonparametric approach as follows. The idea is to take the Discrete Fourier Transforms
(DFT) of the involved signals, and find the transfer function relating them.

(
�uu(!) =

1

2⇡

P1
⌧=�1 ruu(⌧)e�i!⌧

�uy(!) =
1

2⇡

P1
⌧=�1 ruy(⌧)e�i!⌧ .

(4.20)

Then the previous chapter learns us that we have that for all ! one has

�uy(!) = H(e�i!)�uu(!), (4.21)

where

H(e�i!) =
1X

⌧=0

h⌧e
�i⌧!. (4.22)
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(a) (b)

Figure 4.2: (a) A vibration Hammer (b) A circuit scheme for realizing a Pseudo Random Binary
Sequence.

Consequently, a reasonable estimate for H would be

Ĥ(e�i!) =
�̂uy(!)

�̂uu(!)
, (4.23)

where �̂ are reasonable estimates of �. A straightforward estimate would be

�̂uy =
1

2⇡

nX

⌧=�n

r̂uye
�i⌧!, (4.24)

and similarly for �̂uu. Working out r̂uy gives

�̂uy =
1

2⇡n

nX

⌧=�n

max(⌧,0)X

t=1�min(⌧,0)

yt+⌧ute
�i⌧!. (4.25)

Then change of indices ⌧ and t gives

�̂uy =
1

2⇡n

nX

s=1

nX

t=1

ysute
�i(s�t)! =

1

2⇡n
Yn(!)Un(�!), (4.26)

where (
Un(!) =

Pn
s=1

use�is!

Yn(!) =
Pn

s=1

yse�is!.
(4.27)

Those are the Discrete Fourier Transforms of the signals {ut} and {yt} (padded with zeros). For
! = 0, 2⇡

n , 4⇡
n , . . . ,⇡ those can be estimated e�ciently using the Fast Fourier Transform (FFT)

algorithms. In a similar fashion one has

�̂uu =
1

2⇡n
Un(!)Un(�!) =

1

2⇡n
|Un(!)|. (4.28)
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4.4. SPECTRAL ANALYSIS

This estimate is called the periodogram. From the derivations above it follows that

Ĥ(e�i!) =
Yn(!)

Un(!)
. (4.29)

This estimate is sometimes called the empirical transfer function estimate.
However the above estimate to the spectral densities and the transfer function will give poor

results. For example, if ut is a stochastic process, then the estimates eq. (4.28) and (4.26) do not
converge in (the mean square sense) to the true spectrum as n, the number of datapoints tends to
infinity. In particular, the estimate �̂uu will on average behave as �uu, but its variance does not
tend to zero as n ! 1. One of the reasons for this behavior is that ��uu(⌧) will be quite inaccurate
for large values for ⌧ , but all covariance elements r̂uy(⌧) are given the same weight in eq. (4.26)
regardless of their accuracy. Another more subtle reason goes as follows. In eq. (4.26) 2n+1 terms
are summed. Even if the estimation error of each term goes to zero, there is no guarantee that the
global sum goes to zero. These problems may be overcome if the terms of eq. (4.26) corresponding
with large ⌧ are weighted out. Thus, instead of eq. (4.26) the following improed estimate of the
cross-spectrum can be used

�̂0
uy =

1

2⇡

nX

⌧=�n

r̂uy(⌧)w(|⌧ |)e�i⌧!, (4.30)

where w : R ! R
+

is a socalled lag window. It should w(0) = 1, and decreasing. Several forms of
the lag window have been proposed in the literature. Some simple lag windows are presented in
the following example.

Example 30 (Lag Windows) The following lag windows are often used in the literature.

• Rectangular window:

w
1

(|⌧ |) =
(
1 |⌧ |  M

0 |⌧ | > M
(4.31)

• Bartlett window:

w
2

(|⌧ |) =
(
1� |⌧ |

M |⌧ |  M

0 |⌧ | > M
(4.32)

• Hamming and Tukey

w
3

(|⌧ |) =
(

1

2

(1 + cos ⇡⌧
M ) |⌧ |  M

0 |⌧ | > M.
(4.33)

Note that all the windows vanish for |⌧ | > M . If the parameters M is chosen to be su�ciently
large, the periodogram will not be smoothed very much. On the other hand a small M may mean
that essential parts of the spectrum are smoothed out.It is not trivial to choose the parameter M .
Roughly speaking M should be chosen according to trading o↵ the following two objectives:

• M should be small compared to n:

• |r̂uy(⌧)| ⌧ r̂uu(0) for ⌧ � M so as not to smooth out the parts of interest in the true spectrum.

The use of a lag window is necessary to obtain a reasonable accuracy. On the other hand, sharp
peaks in the spectrum might be smeared out. It may therefore not be possible to separate adjacent
peaks. Thus the use of a lag window will give a limited frequency resolution. The e↵ect of a lag
window is illustrated in the following example.
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4.5 Nonparameteric Techniques for Timeseries

Let us study a similar technique for estimating the transfer function of a timeseries. Here, we do
not have an input sequence available, but we assume that the observed sequence {yt}t is driven
by unobserved white noise {et}. The previous chapter enumerates some common models for such
systems. Here we will give a main nonparametric technique useful for recovering the underlying
structure. Again such approaches are based on working with the covariances observed in the system.

4.5.1 Yule-Walker Correlation Analysis

Let’s consider the equivalent of the correlation approach when timeseries are concerned. At first,
assume the studied timeseries follows an AR(m) model as

yt � a
1

yt�1

� · · ·� amyt�m = et, (4.34)

where {et} is zero mean white noise such that

(
E[et] = 0

E[etet�⌧ ] = �2�⌧
(4.35)

with �⌧ equal to one if ⌧ = 0, and equals zero otherwise. Note that then {yt} can be seen as a linear
combination of past values of the noise {es}st. B multiplication of both sides of eq. (4.34) with a
(delayed) value of the process yt�⌧ for all ⌧ = 0, 1, 2, . . . , and taking the expectation one gets

E[yt�⌧ (yt � a
1

yt�1

� · · ·� amyt�m)] = E[yt�⌧et], (4.36)

or

ry(⌧)� a
1

ry(⌧ � 1)� · · ·� amry⌧ �m =

(
�2 if ⌧ = 0

0 otherwise,
(4.37)

where we defined as before

ry(⌧) = E[ytyt�⌧ ] = lim
n!1

1

n

nX

t=⌧+1

ytyt�⌧ . (4.38)

Assuming those are given for all ⌧ = 0, 1, 2, . . . , those can be organized as a system of linear
equations as follows

2

6664

�2

0
...
0

3

7775
=

2

6666666664

ry(0) ry(1) ry(2) . . . ry(M) . . .
ry(1) ry(0) ry(M � 1) . . .
ry(2)

...
. . .

ry(M) ry(M � 1) ry(0) . . .

3

7777777775

2

6664

a
0

a
1

...
aM

3

7775
(4.39)

75



4.5. NONPARAMETERIC TECHNIQUES FOR TIMESERIES

Those are known as the Yule-Walker (YW) equations. Conversely, if one knows the parameters
{a

1

, . . . , ama}, the covariances {ry(⌧)} are given as solutions to the system
2

6664

1 a
1

a
2

. . . ama

a
1

1 + a
2

a
3

0
...

. . .
...

ama 0 . . . 1

3

7775

2

6664

ry(0)
ry(1)
...

ry(ma)

3

7775
=

2

6664

�2

0
...
0

3

7775
. (4.40)

Next, assume that the timeseries follows an ARMA(ma,mc) model given as

yt � a
1

yt�1

� · · ·� amayt�ma = et + c
1

et�1

+ · · ·+ cmcet�mc , (4.41)

and where {et} is a white zero mean process satisfying the conditions (4.35). Then, again multi-
plying both sides of eq. (4.41) with yt�⌧ and taking the expectation gives the relations

ry(⌧)� a
1

ry(⌧ � 1)� · · ·� amary⌧ �ma = rey(⌧) + c
1

rey(⌧ � 1) + · · ·+ rey(⌧ �mc). (4.42)

The cross-correlations rey(⌧) are found as follows. Multiply both sides of eq.(4.41) with et�⌧ and
take expectations, then we have that

rey(⌧)� a
1

rey(⌧ � 1)� · · ·� amary⌧ �ma = �2 (c
0

�⌧ + · · ·+ cmc�⌧�mc) , (4.43)

where

rey(⌧) = E[et+⌧yt] = lim
n!

1

n

n�⌧X

t=1

et+⌧yt. (4.44)

As yt is a linear combination of {es}st, we have that rey(⌧) = 0 for ⌧ > 0. It as such follows that
for all ⌧ > mc one has

ry(⌧)� a
1

ry(⌧ � 1)� · · ·� amary(⌧ �ma) = 0. (4.45)

Note that those equations involve only the AR parameters of the ARMA process.

4.5.2 Spectral Factorization

In order to get an initial estimate of the MA parameters the following technique is often used.
Rather than setting up the YW equations, one extracts the MA part from the covariance structure
using the following Lemma.

Lemma 5 (Spectral Factorization) Let � : C ! C be a spectrum that can be written for all
z 2 C as

�(z) =

Pm�

k=�m�
�kzk

Pm↵

k=�m↵
↵kzk

, (4.46)

for ��m� , . . . ,�m� ,↵�m↵ , . . . ,↵m↵ 2 R. Then there exists two functions
(
A(z) = 1 + a

1

z + · · ·+ am↵z
m↵

C(z) = 1 + c
1

z + · · ·+ cm�z
m� ,

(4.47)

with a
1

, . . . , am↵ , c1, . . . , cm� 2 C, and a constant � > 0 such that
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1. A(z) has all zeros inside the unit circle.

2. C(z) has all zeros inside or on the unit circle.

3. one has for all z 2 C that

�(z) = �2

C(z)

A(z)

C⇤(z�⇤)
A⇤(z�⇤)

, (4.48)

where A⇤(z) = 1 + a⇤
1

z + · · ·+ a⇤m↵
and C⇤(z�⇤) = 1 + c⇤

1

z + · · ·+ c⇤m�
and with z⇤ denoting

the conjugate of z 2 C.

The proof of this result hinges on complex algebra, see e.g. [5].

Example 31 (MA Process) Suppose one has given a MA(m) process such that

yt = et + c
1

et�1

+ · · ·+ cmet�m, (4.49)

and where {et}t is zero mean, white noise with standard deviation �. Then the covariances of this
process are given as

ry(⌧) =

(
�2c2|⌧ | |⌧ |  m

0 elsewhere.
(4.50)

The spectral density is then given for any ! 2]� ⇡,⇡] as

�y(!) =
1

2⇡

X

⌧

ry(⌧)e
�i!⌧ =

1

2⇡

 
ry(0) +

mX

k=1

c2k(e
�i!k + ei!k)

!

=
1

2⇡

 
ry(0) +

mX

k=1

c2k cos(!k)

!
. (4.51)
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