
Chapter 5

Stochastic Setup

Niels Bohr, 1986 - as reply to a visitor to his home in Tisvilde who asked him if he
really believed a horseshoe above his door brought him luck: ”Of course not ... but I am
told it works even if you don’t believe in it.”

The framework of stochastic models is often useful for implementing the following two philoso-
phies:

(Analysis): The primary use of a stochastic framework is to assume that the experiments involved in
a certain estimation task follow a proper stochastic rule set. In this way one can abstract
away much of the technical irregularities while making life much easier for the analysis of
the techniques. The price one has to pay in general for this convenience is that the results
’only’ hold ’almost surely’, that is, there is an extremely small chance that results go bogus.
(Computer scientists like to use the phrase ’with overwhelming probability’).

(Constructive): Recent work has shown that the device of randomization is useful in the design of algorithms.
It turns out that this way one can push the boundaries of feasible computation tasks much
further theoretically (w.r.t. computational complexity) as well as practically (w.r.t. large-
scale computation tasks).

The predominant setup in the analysis of estimation, identification or filtering techniques is
that where the involved signals are considered (partially) stochastic. Intuitively this means that
the signals itself can be unspecified (to a certain degree), but that the mechanism generating the
signals is fixed. In practice, stochastic properties manifest themselves as follows: when performing
a stochastic experiment twice under exactly the same conditions, results could possibly di↵er. If
performing the same experiment twice and results would always be equal, we say that the experiment
were deterministic.

While I assume that the reader experienced already an introductory class in probability theory
or statistics, we will spend some e↵ort in reviewing the basics once more. Not only for the sake of
expressing results unambiguously, but also in order to pinpoint the power and limitations of the
surveyed results later.
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5.1. GETTING THE BASICS RIGHT

5.1 Getting the Basics Right

5.1.1 Events, Random variables and Derived Concepts

The following definitions establish a proper setup, as introduced by N. Kolmogorov in the 30s.
Abstracting from applications, probability theory studies an experiment with a number of possible
outcomes {!}. The totality of such outcomes is the sample space ⌦ = {!}. An event - say A is
a subset of the sample space. A probability measure P is a function from an event to a number
between 0 and 1, or P : {⌦} ! [0, 1], with properties:

1. 0  P (A)  1

2. P (⌦) = 1

3. Let {Ai}i be any (countable many) set of disjunct events, then
P

i P (Ai) = P ([iAi).

Not all possible subsets of ⌦ need to be events, but the universe of events must form a sigma-field:
’if A is an event, so is ⌦\A’ and ’the union of any countable number of events must be an event’,
and ’⌦ is an event’. Let’s give some examples.

Example 32 • Sample ! = images on web. A corresponding sample space ⌦ contains all
images present on the web. An event A is e.g. ’all the images in ⌦ which are black and white’
(informally, an image ! 2 ⌦ is black-and-white i↵ ! 2 A.)

• Sample ! = speech signals. A corresponding sample space ⌦ is the collection of all possible
speech signals. An event A is e.g. the subset of speech signals only containing background
noise. (informally, a speech signal ! contains only background noise i↵ ! 2 A.)

• Sample ! = weather in Uppsala. A corresponding sample space ⌦ is the collection of all
possible weather regimes in Uppsala. An event A here is e.g. those cases where the weather
is called sunny. (informally, a weather regime ! is called sunny i↵ ! 2 A.)

• Sample ! = external force on a petrochemical plant. A corresponding sample space ⌦ is the
collection of all possible external forces which could act on the studied plant. An event A here
is e.g. the collections of all those external forces which may drive the plant to an unstable
working. (informally, an external force ! results in unstable working i↵ ! 2 A.)

There are a number of derived concepts which we merely summarize:

(Joint): Let A,B ⇢ ⌦ be two events, then the joint probaility is defined as

P (A,B) , P (A [B). (5.1)

(Independence): Let A,B ⇢ ⌦ be two events, then they are called mutually independent if

P (A,B) , P (A)P (B). (5.2)

(Conditional): Let A,B ⇢ ⌦ be two events where B 6= {}, then the conditional probability is defined as

P (A|B) , P (A,B)

P (B)
. (5.3)
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5.1. GETTING THE BASICS RIGHT

(Bayes): Let A,B ⇢ ⌦ be two events, then Bayes’ law says that

P (A|B)P (B) = P (B|A)P (A) = P (A,B). (5.4)

Often, we are interested in quantities associated with the outcome of an experiment. Such quantity is
denoted as a random variable. Formally, a random variable is a function defined for any possible ! 2
⌦. If the random variable is evaluated at the sample ! which actually occurred (the observation),
we refer to it as a realization of this random variable. This quantity is what we intend with a
value of a random variable. Following the convention in statistical literature, we denote a random
variable as a capital letter. This notational convention makes it easier to discriminate between
random variables and deterministic quantities (denoted using lower case letter). This motivates the
use of the following notational convention:

P (X = x) , P ({!|X(!) = x}) . (5.5)

where {!|X(!) = x} is the set of all samples ! which has a random value X(!) equal to x. We
have as before that P : {⌦} ! [0, 1], and as such P ({!|X(!) = x}) gives a number between 0 and
1. Likewise, P (X > 0) means that P ({!|X(!) > 0}) etc. If X denotes a random variable defined
over the outcome space ⌦, then X(!) denotes a realization measured when ! is sampled from ⌦.
Sometimes, X can only take a finite number of values, and X is as such called discrete. If not so,
X is called a continuous random variable.

Example 33 The following example illustrates ideas using a simple urn model.

1. Consider an urn containing m = 10 balls, one ball labeled ’2’, three balls labeled ’1’, and 6 of
them labeled ’0’. The set of all 10 balls is called the ’sampling space’ ⌦.

2. Randomness samples a ball in ⌦ denoted as !. This sampling is essentially uniform, any
sample comes up equally probable.

3. ’The subset of balls with label 0’ or informally ’A ball with label ’0’ is drawn’, is an event.

4. Then the label of this ’random’ ball - denoted as the function Z - is a random variable. The
actual value Z(!) is called a realization of this random variable.

5. Before the actual sampling, one could expect a value Z of 1

10

(6⇤0+3⇤1+1⇤2) = 0.5 denoted
as E[Z] = 0.5.

6. If repeating the experiment n ! 1 times independently, one would end up with the ball labeled
’2’ in a fraction of 1

10

of the times. This is captured by the law of large numbers.

At this elementary level, we make already important conceptual steps:

• The sample space describes the physical reality.

• A random variable is a mapping of a sample to its corresponding label.

• ’Randomness’ picks any sample with equal probability, while the probability of the corre-
sponding labels is governed by the frequency of the samples with identical labels. This means
that the law of probability corresponding to Z is implied by the definition of the random
variable, not in the way randomness were implemented!
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• Expectations are evaluated before the actual experiment is carried out. When doing the
calculations when knowledge exists on which ! actually occurred in reality (the observation),
the notion of probability is contaminated! In general, a statisticians job is finished right before
the actual experiment is implemented (except for the consultancy part).

5.1.2 Continuous Random Variables

However, the above setup does not entirely characterize the intuitive concepts that we were after:
a stochastic setup is adopted in order to characterize the mechanism generating the data. This
probability function P is however not suited to explain the likelihood of a single sample, but
focusses on sets and subsets of events. This subtle di↵erence leads easily to a paradox, as seen
in the following example. Consider an event-space such that an infinite number of events may
occur. For example, consider the events of all possible ’weathers’ in Uppsala: an infinite number
of variations can occur, and assume (for the sake of the argument) that any ’weather’ is equally
probably to occur at an instance. Lets represent the weather which actually occurred as !. Then
P (!) = 0 necessarily, and the probability of this event equals zero. So it seems that this precise
sample (the observation) was not possible to occur after all! This paradox arises as working with
infinite sample spaces is not as straightforward as in the discrete case, and a proper notion of ’the
probability of a single event’ needs an additional apparatus as shown in the following subsection.

In case the sample space ⌦ contains an (uncountable) infinite number of elements, the above
framework needs to be extended slightly in order to deal properly with measurability issues. Let
us first look towards the case where a random value X defined over such a sampling space takes
values in R.

Definition 14 (CDF and PDF) The laws of probability associated to a continuous, univariate
random variable go as follows:

(CDF): The Cumulative Distribution Function F : R ! [0, 1] (CDF) of a univariate random variable
X : ⌦ ! R is defined as

F (x) , P (X  x) , P ({!|X(!)  x}) . (5.6)

Consequently, one has that F (�1) = 0, F (1) = 1 and the function F is monotonically
increasing. An example is given in Fig. (5.1.a)

(PDF): The Probability Density Function f : R ! R
+

(PDF) of a univariate random variable X :
⌦ ! R with a di↵erential CDF F is defined as

f(x) , @P (X � x)

@x
=

@F (x)

@x
. (5.7)

Those definitions are not mere academical, but clarify for example that a density function does not
equal a probability law. Both notions lead also to di↵erent tools to estimate the probability laws
underlying data.

(HIST): Given a sample of n samples taking values in R, or {yi}ni=1

⇢ R, the histogram counts
the frequency (normalized number) of samples occurring in a given interval (bin) of R. For
example, if we have 5 samples {1, 2, 3, 4, 5}, and two intervals (bins) (�1, 3] and (3,1), then
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the histogram would say (3/5, 2/5). This is then an estimate of the PDF. A graphical example
is given in Fig. (5.2).a of a histogram with 20 bins, and using a sample of n = 100. The bins
are usually chosen to make the picture look ’pleasing’ (ad hoc).

(ECDF): Given a sample of n samples taking values in R, or {yi}ni=1

⇢ R, then the Empirical Cumulative
Distribution Function (ECDF) is a function F̂n : R ! [0, 1] which is defined as

F̂n(x) =
1

n

nX

i=1

I(yi  x), (5.8)

where I(z) equals one if z holds true, and zero otherwise. Note that in order to set up this
function, one does not need to make choices as the location or size of the bins. This estimator
is far more e�cient than the histogram, albeit the latter is more often used as it is visually
more appealing. A graphical example is given in Fig. (5.2).b of the ECDF using a sample of
n = 100.

5.1.3 Normal or Gaussian Distribution

Of special (practical as well as theoretical) interest is the Gaussian or Normal distribution with mean
µ and standard deviation � > 0. Those quantities are also referred to as the first two moments of
the distribution. The PDF is given for any x as

f(x;µ,�) =
1p
2⇡�2

exp

✓
� (x� µ)2

2�2

◆
. (5.9)

The quantity �2 is also known as the variance and characterizes the spread of the PDF (see Fig.
(5.1).a) This specific distribution is of practical as well as theoretical interest for many reasons,
perhaps the most important ones being:

(CLT): (the Central Limit Theorem): This classical result states that the average of a large number
n of random variables arising from independently samples tends to a normal distribution with
standard deviation O(

p
n). This theorem has a long history, but is now often connected to

J.W. Lindenberg.

(Closed): The Gaussian distribution is remarkably stable, meaning that a convolution of two Gaussians
is still Gaussian. Often, when performing calculations with Gaussian distributions one can
easily derive that the resulting distribution is Gaussian as well. Since the Gaussian is charac-
terized by their first two moments only, one consequently needs only to calculate with those
and sidestep working with the functional form for the rest.

(Convenience): A third reason one has for using the Gaussian distribution is its convenience. For example,
from a practical point of view many related tools are available in statistical software environ-
ments. From a more pen-and-pencil perspective it is plain that it is more easy to work with
the two first moments than to work with the full functional form of a distribution.

The first reason also implies that the Gaussian distribution will often turn up as a limit distribution
of an estimator.
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Figure 5.1: (a) PDF of the normal distribution with mean 0 and unit variance. (b) CDF of the
normal distribution with mean 0 and unit variance.
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Figure 5.2: Illustration of di↵erence of CDF versus PDF based on a sample of n = 100 standard
Gaussian distributed values. The histogram - displaying the relative frequency of samples falling
within each bin - is the better-known estimate of the pdf. The empirical CDF - defined for each
x 2 R as the relative frequency of samples smaller than x - is however much more accurate and
fool-proof, but is perhaps less intuitive.
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Example 34 The following examples are instructive. Assume Z is a random variable taking values
in Rd, following a Gaussian distribution with the PDF as given in (5.9) for given parameters µ 2 Rd

and covariance ⌃ 2 Rd⇥d. Then

E[Z] = µ, (5.10)

and

E
⇥
(Z � µ)(Z � µ)T

⇤
= ⌃. (5.11)

and

Z ⇠ N (µ, Id) , Z � µ ⇠ N (µ, Id). (5.12)

Let z 2 Rd be a realization of the random variable Z, then

E[z] = z, (5.13)

and

E[zTZ] = zTµ. (5.14)

Hence

E
⇥
(Z � µ)(z � µ)T

⇤
= 0d. (5.15)

5.1.4 Random Vectors

A random vector is an array of random variables. In general, those random variables are related,
and the consequent probability rules governing the sampling of the random vector summarizes both
the individual laws as the dependence structure inbetween the di↵erent elements. This then leads
to the notion of a joint probability distribution functions. Again, we make a di↵erence between
the joint Cumulative Distribution Function (joint CDF) and the joint Probability Density Function
(joint PDF). Those are also referred to as multivariate distribution functions.

The canonical example is the multivariate Gaussian distribution. The Multivariate Gaussian
PDF in d dimensions with mean vector µ 2 Rd and covariance matrix ⌃ 2 Rd⇥d is given for any
x 2 Rd as

f(x;µ,⌃) =
1

(2⇡)
k
2 |⌃| 12

exp
�
�(x� µ)T⌃�1(x� µ)

�
, (5.16)

where |⌃| denotes the determinant of the matrix ⌃, and we assume that ⌃ has a unique inverse (or
the determinant does not equal 0). Figure (5.3) gives an example of the CDF and the PDF of a
Multi-Variate Normal (MVN) distribution with mean µ = (0, 0)T and ⌃ = I

2

.

5.1.5 Stochastic Processes

In the context of this course we stick to the following definition of a stochastic process.

Definition 15 (Stochastic Process) A stochastic process Z is a sequence of random variables
Z = {Z

1

, Z
2

, . . . , Zn} where each Zt takes values in R. It is entirely defined by its joint probability
distribution. A sequence of values {z

1

, . . . , zn} is a realization of this process if it is assumed to be
sampled from mentioned stochastic process.
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Figure 5.3: Example of a Multivariate Normal Distribution of two independent random variables.
(a) the CDF, and (b) the PDF.

Formally, we consider again an experiment with sample space ⌦. Now, a stochastic process is a
mapping from a sample ! into a path, i.e. a possibly infinite sequence of numbers. The mathemat-
ical description of a path is as a function mapping time instances into its corresponding element in
the array of numbers. For example let z = (z

1

, z
2

, . . . ) denote such an array, then there z(t) = zt
for each t = 1, 2, . . . . This indicates that there is no formal di↵erence between a function and an
indexed array, either concept is a mere notational convention. Since in the context of this course we
will primarily be interested in discrete stochastic processes where t could take a finite or countably
infinite number of values, we will stick to the indexing notation.

While this looks like a very general definition, it excludes quite some cases which are of interest
in di↵erent situations. Firstly, we restrict attention to finite sequences of random variables, where
the index t (’time’) runs from 1 to n. Alternatives are found when the index t can take on continuous
values (’Continuous stochastic processes’), or even more complex objects belonging to a well-defined
group (’Empirical processes’).

The subtlety of such processes goes as follows. A stochastic process is a mapping from an
event ! to a corresponding time-series, denoted as a realization of this process. The expected
value of a stochastic process is the average of all time-series associated to all possible events. That
is, the expected value of a stochastic process is a deterministic timeseries! Let this timeseries be
denoted as m = (. . . ,m

0

,m
1

,m
2

, . . . ). In general, one is interested of a value of one location of
this timeseries, say mt Similarly, one can come up with a definition of the covariance associated
to a stochastic process, and the covariance evaluated for certain instances. Often, one makes a
simplifying assumption on this series by assuming stationarity:

Definition 16 (Stationary Process) A stochastic process {Zt}t is said to be (wide-sense) sta-
tionary in case the first two moments do not vary over time, or

(
E[Zt] = . . .E[Zt] = · · · = E[Zn] = m

E[(Zt �mt)(Zt�⌧ �mt�⌧ )] = E[(Zt0 �mt0)(Zt0�⌧ �mt0�⌧ )] = r(⌧),
(5.17)

for all t, t0, where one has |m| < C and |r(⌧)|  c for some finite constants C, c.
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This implies that the covariance structure of a stochastic process has a simple form: namely, that
all covariances associated to two di↵erent locations are equal. This structural assumption makes
stochastic processes behave very similar as the LTIs as studied before (why?). In the context of
system identification, one is often working assuming a slightly weaker condition on the involved
stochastic processes:

Definition 17 (Quasi-Stationary Process) A stochastic process {Zt}t is said to be quasi-stationary
in case one has 8

><

>:

E[Zt] = mt

E[ZtZs] = r(t, s)

limn!1 1

n

Pn
t=1

r(t, t� ⌧) = r(⌧),

(5.18)

where for all t one has |mt| < C and |r(⌧)|  c for some finite constants C, c.

That is, we allow the mean of the signal to vary over time, but assume the average covariance be
independent over time. The reason that this definition is quite useful is that systems will typically
be expressed as stochastic process Y satisfying for all t = 1, . . . , n that

E[Yt] = ht(u1

, . . . , ut), (5.19)

where ht is a filter, and {u
1

, . . . , un} are deterministic. That means that the mean is almost never
time-invariant.

An important problem is that in practice we are only given a single realization of a stochastic
process. This observation seems to imply that there is nothing much we as a statistician can do.
Surely, we must work with expectations of stochastic quantities for which we have only one sample
from. And we know that a average of only one sample gives a very poor estimate of the expectation
of this sample. Luckily, there is however a way to go ahead. We can shift a bit further in the
stochastic process, and uses the so collected samples to build up a proper estimate. If such estimate
would indeed converge to the expected value, one says that the process under study is ergodic:

Definition 18 (Ergodic Process) A stochastic process {Zt}t is said to be ergodic if for any ⌧ =
0, 1, . . . one has (

limn!1 1

n

Pn
t=1

Zt = E[Z]

limn!1 1

n

Pn
t=1

ZtZt�⌧ = E[ZtZt�⌧ ].
(5.20)

This notion turns out to be quite fundamental in the analysis of stochastic processes, but in practice
it is often (assumed to be) satisfied.

Practically, perhaps the most useful stochastic process is the following.

Definition 19 (Zero Mean White Gaussian Noise) A stochastic process Z = {Z
1

, . . . , Zn} is
called a zero mean white Gaussian noise in case

(Zero Mean): For each t one has E[Zt] = 0.

(Gaussian): Each subset of elements is jointly Gaussian distributed with zero mean.

(White): The di↵erent elements are uncorrelated.

slightly weaker is
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Definition 20 (Zero Mean White Noise) A stochastic process Z = {Z
1

, . . . , Zn} is called a
zero mean white noise in case (i) For each t, E[Zt] = 0, (ii) the variances of the elements are
bounded (i.e. the first two moments exists), and (iii) the di↵erent elements are uncorrelated.

The naming ’white’ is historically connected to the related Brownian motion, having a non-
vanishing correlation matrix. A popular motivation is that such ’white’ noise signal has no ’coloring’
due to the fact that all frequencies in its spectrum are equally present.

5.1.6 Interpretations of Probabilities

While notions of probability, random variables and derived concepts were formulated rock-solid
(i.e. axiomatic) by A.N. Kolmogorov in the 1930s, there is still ample discussion of what those
quantities stand for. This discussion is not only to be fought by philosophers of science, but ones’
position here has far-reaching practical impact as well. Rather than surveying the di↵erent schools
of thought on this matter, let us give the following example by Cherno↵ suggesting that one should
not be guided only by formulas, definitions and formal derivations only in this discussion: statistic
is in first instance a practical tool conceived in order to assist decision making in reality. Be critical
of its use!

’The metallurgist told his friend the statistician how he planned to test the e↵ect
of heat on the strength of a metal bar by sawing the bar into six pieces. The first two
would go into the hot oven, the next two into the medium oven and the last two into
the cool oven. The statistician, horrified, explained how he should randomize in order
to avoid the e↵ect of a possible gradient of strength in the metal bar. The method of
randomization was applied, and it turned out that the randomized experiment called
for putting the first two into the hot oven, the next two into the medium oven and the
last two into the cool oven. ”Obviously, we can’t do that,” said the metallurgist. ”On
the contrary, you have to do that,” said the statistician.”’

5.2 Statistical Inference

Given a statistical setup (’statistical system’) associated to an experiment, perhaps encoded as a
number of CDFs or PDFs, one can give solutions to many derived problems. For example one can
quantify ’what value to expect next’, ’how often does a significance test succeed in its purpose’,
’when is an observation not ’typical’ under this statistical model’, and so on. Statistical inference
then studies the question how a statistical system can be identified from associated random values.
Often such random variables denote the observations which were gathered while performing an
experiment of the studied system. We acknowledge at this point that a statistical system is often
an highly abstracted description of the actual experiment, and one rather talks about a ’statistical
model underlying the observations’, however ambiguous that may sound in the context of this book.

5.2.1 In All Likelihood

Definition 21 (Likelihood Function) Consider a random value, random vector of stochastic
process Zn which takes values in Z, and with associated cdf F and pdf f (assuming it exists).
Consider a family of functions {f✓ : Z ! R

+

}✓ indexed by ✓ 2 ⇥. The hope is that this family
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contains an element f✓⇤ which is in some sense similar to the unknown f . Then the strictly positive
likelihood function Ln : ⇥ ! R+

0

is defined as

Ln(✓) = f✓(Zn). (5.21)

The log-Likelihood of ✓ on a sample Zn is defined as `n(✓) , logLn(✓)

Note the similarities as well as dissimilarities of the Likelihood function and the pdf f(Zn) evaluated
in the observations. In the special case that there exist a ✓⇤ 2 ⇥ such that f✓⇤ = f , one has obviously
that f(Zn) = Ln(✓⇤).

Definition 22 (The Maximum Likelihood Estimator) Assume the values z 2 Z observed
during an experiment are assumed to follow a random variable Z taking value in Z, obeying a
PDF function f which is only known up to some parameters ✓. Then the Likelihood function Ln(✓)
can be constructed. A Maximum Likelihood (ML) estimator ✓̂ of ✓ is defined as

✓̂ 2 argmax
✓

Ln(z). (5.22)

A prototypical example goes as follows:

Example 35 (Average as an Estimator) Given n i.i.d. samples from a random variable Z
obeying a Gaussian distribution with fixed but unknown mean µ, and a given variance �2, or

f(z) =
1p
2⇡�2

exp

✓
� (z � µ)2

2�2

◆
. (5.23)

Then the ML estimator for Then given a sample {Z
1

, . . . , Zn} of length n, each one being an
independent copy of the Gaussian distribution of (5.23). Then the ML estimate of µ is given as

µ̂ = argmax
µ

`n(µ) = log
nY

i=1

1p
2⇡�2

exp

✓
� (Zi � µ)2

2�2

◆
. (5.24)

Simplifying the expression and neglecting fixed terms gives the equivalent problem

µ̂ = argmax
µ

nX

i=1

�(Zi � µ)2. (5.25)

which equals the familiar LS estimator, and the closed form formula is given as

Z̄n =
1

n

nX

i=1

Zi. (5.26)

Note that this equivalence does not hold any longer if � is unknown too!

This reasoning can easily be generalized to the case where deterministic explanatory vectors
{xi}i (’inputs’) are available as well. At first, let a statistical model be assumed as follows.

Y = xT ✓
0

+ e, (5.27)
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where x 2 Rd is a deterministic, fixed vector, ✓
0

2 Rd is a fixed vector which happened to be
unknown. The last term e is a random variable which takes values into R following certain rules of
probabilities. Specifically, we have that it follows a PDF given as fe(·;µ,�) with mean µ 2 R and
standard deviation � 2 R, defined 8z 2 R as

f(z;µ,�) =
1

�
p
2⇡

exp

✓
� (z � µ)2

2�2

◆
. (5.28)

We assume that e follows a PDF f(·, 0,�). This model implies that also Y is a random variable
following a PDF with mean f(·;xT ✓,�). A last important assumption which is often given is that
the samples we observe from this model are independently sampled. That is, the n samples {Yi}ni=1

satisfy the model
Yi = xT

i ✓0 + ei, (5.29)

where {ei}ni=1

are independent, identically distributed (i.i.d.), that is each sample ei does not contain
information about a sample ej with i 6= j, except for their shared PDF function.

Definition 23 (I.I.D.) A set of random variables {e
1

, . . . , en} which each take values in R, con-
tains independent random variables i↵ for all i 6= j = 1, . . . , n as

E[eiej ] = E[ei]E[ej ]. (5.30)

Those random variables are identically distributed i↵ they share the same probability function, or if
ei has PDF fi one has

fi(z) = fj(z), (5.31)

for all i, j = 1, . . . , n and z ranging over the domain R. If both conditions are satisfied, then the set
{e

1

, . . . , en} is denoted as independently and identically distributed, or abbreviated as i.i.d.

This assumption plays a paramount role in most statistical inference techniques. However, it is
exactly on those assumptions that time-series analysis, and estimation for dynamical models will
deviate. That is, in such context often past errors et will say something about the next term et+1

.
This cases will be investigated in some details in later chapters.

Now we can combine the di↵erent elements. The corresponding Likelihood function of the model
of eq. (5.27), the assumed form of the errors as in(5.28), as well as the i.i.d. assumption results in
the following Likelihood function expressed in terms of the parameter vector ✓:

Ln(✓) = f(Y
1

, . . . , Yn) =
Y

i=1

f(Yi � xT
i ✓; 0,�). (5.32)

Note again, that this function equals the PDF of the n samples in case ✓ = ✓
0

. Now the Maximum
Likelihood Estimate is given as

✓̂ = argmax
✓

Ln(✓), (5.33)

Working out the right-hand side gives

✓̂ = argmax
✓

nY

i=1

1

�
p
2⇡

exp

✓
� (Yi � xT

i ✓)
2

2�

◆
/ �

nX

i=1

�
Yi � xT

i ✓
�
2

. (5.34)

In this special case, it is seen that the ML estimator is found by solving the least squares problem
✓̂ = argmin✓

Pn
i=1

(Yi � xT
i ✓)

2. That is, in case � > 0 is fixed. In case � needs to be estimated as
well, the Likelihood function becomes more intricate.
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5.2.2 Power and Limitations of ML

The ML estimator has a number of exquisite properties as discussed in some detail in the abundant
literature of statistical inference. Perhaps the most direct property is that the ML method is
e�cient, that is it performs as well as any estimator under the given assumptions.

Definition 24 (Unbiased) Given any estimator ✓n = g(Y
1

, . . . , Yn) which approximates a param-
eter (vector) ✓

0

based on a sample Y
1

, . . . , Yn. Then this estimator is unbiased i↵

E[✓n] = E[g(Y
1

, . . . , Yn)] = ✓
0

. (5.35)

Theorem 3 (EMSE) Given any estimator ✓n = g(Y
1

, . . . , Yn) of ✓0 , then the performance of this
estimator can be expressed as the Expected Mean Square Error (EMSE)

V (g) = E kg(Y
1

, . . . , Yn)� ✓k2
2

= E k✓n � ✓
0

k2
2

. (5.36)

Theorem 4 (Covariance of Estimate) Consider a class of PDFs {f✓ : ✓ 2 Rd} where ✓
0

is
the (unknown) one underlying the data observations, that is f✓0 is the PDF underlying the sample
Y
1

, . . . , Yn. Given any estimator ✓n = g(Y
1

, . . . , Yn) of a parameter vector ✓
0

2 Rd , then the
covariance of this estimator R(g) 2 Rd ⇥ d can be expressed as

R(g) = E
⇥
(g(Y

1

, . . . , Yn)� ✓)(g(Y
1

, . . . , Yn)� ✓)T
⇤
= E

⇥
(✓n � ✓

0

)T
⇤
. (5.37)

Theorem 5 (Cramér-Rao Lowerbound) Given any estimator ✓n = g(Y
1

, . . . , Yn) of ✓
0

which
is unbiased, then

R(g) ⌫ I�1

✓0
, (5.38)

where the so-called Fisher information matrix I✓0 is defined as

I✓0 = E

d log f✓(Y1

, . . . , Yn)

d✓

dT log f✓(Y1

, . . . , Yn)

d✓

���
✓=✓0

�

= �E

d2 log f✓(Y1

, . . . , Yn)

d✓2

���
✓=✓0

�
. (5.39)

The general proof can e.g. be found in Ljung’s book on System Identification, Section 7.4 and
Appendix 7.A. The crucial steps are however present in the following simplified form.

Lemma 6 (Cramér-Rao, simplified) Consider the case where we have a class of PDFs with a
single parameter, say {f✓ : ✓ 2 R}, such that there is a ✓

0

2 R such that f✓0 underlies the sample
Y
1

, . . . , Yn. Let ✓n = g(Y
1

, . . . , Yn) be an unbiased estimator of ✓
0

, then

E
⇥
(✓n � ✓

0

)2
⇤
� 1

m✓0

. (5.40)

where

m✓0 = E

df✓
d✓

���
✓=✓0

�
2

. (5.41)
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5.3 Least Squares Revisited

Let us now turn attention once more to the least squares estimator, and derive some statistical
properties on how this works. The analysis is mostly asymptotic, that is properties are derived as
if we would have that n ! 1. This is in practice not the case obviously, but those results give
nevertheless a good indication of how the estimators behave. We will work under the assumptions
that n observations {Yi}ni=1

follow the model

Yi = xT
i ✓0 +Di, (5.42)

where ✓
0

2 Rd is the true parameter which is fixed and deterministic, but which happens to
be unknown to us. Here {D

1

, . . . , Dn} are i.i.d. and hence is uncorrelated, all have zero mean
E[Di] = 0, but have a fully unspecified PDF except for some regularity conditions. Still the LS
estimator has very good properties, although it does not correspond necessarily to a ML estimator.

Note at this point the conceptual di↵erence of the deterministic model

yi = xT
i ✓ + ✏i, (5.43)

where {✏
1

, . . . , ✏n} are (deterministic) residuals, depending (implicitly) on the choice of ✓. For this
model, there is no such thing as a true parameter. Moreover, there is no stochastic component,
such that e.g. E[✏i] = ✏i. Note the important di↵erences between the ’true’ noise {Di}i under
model (5.42), and the residuals {✏i}i. They only equal each other in the special case that the model
(5.42) is assumed to underly the observations {yi}i (that is if {yi}i are samples from {Yi}i), and
✓ = ✓

0

(that is, we have estimated the true parameter exactly). Often one makes this assumption
that {yi}i are samples from {Yi}i, but one has merely that ✓ ⇡ ✓

0

and the residual terms do not
obey the stochastic properties of the noise!

Example 36 (Average, Ct’d) Consider again the model Yi = ✓
0

+Di where ✓
0

2 R is fixed but
unknown, and {Di}i are i.i.d. random variables with zero mean and standard deviation �. Then
the LS estimator ✓n of ✓

0

is solves the optimization problem

Vn(✓n) = min
✓

nX

i=1

(Yi � ✓)2, (5.44)

for which the solution is given as ✓n = 1

n

Pn
i=1

Yi. How well does ✓n estimate ✓
0

?

E[✓
0

� ✓n]
2 = E

"
✓
0

� 1

n

nX

i=1

Yi

#
2

= E
"
1

n

nX

i=1

(✓
0

� Yi)

#
2

=
1

n2

nX

i=1

E[D2

i ] =
�2

n
. (5.45)

Now we answer the question whether the minimal value Vn(✓n) says something about the standard
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deviation �. Therefore, we elaborate the objective for the optimal ✓n, which gives

Vn(✓n) = E
nX

i=1

 
Yi �

1

n

nX

i=1

Yi

!
2

= E
nX

i=1

0

@(Yi � ✓
0

)� (
1

n

nX

j=1

Yj � ✓
0

)

1

A
2

= E
nX

i=1

0

B@(Yi � ✓
0

)2 � 2(Yi � ✓
0

)

0

@ 1

n

nX

j=1

Yj � ✓
0

1

A+

0

@ 1

n

nX

j=1

Yi � ✓
0

1

A
2

1

CA

= E
nX

i=1

0

@D2

i �
2

n

nX

j=1

DiDj +
1

n

nX

j=1

D2

i

1

A

=
nX

i=1

E[D2

i ]� E 1

n

nX

i=1

D2

i

= (n� 1)�2, (5.46)

since
Pn

i=1

(Yi � ✓n) = 0 by the property of least squares.

Let us now study the covariance and the expected minimal value of the OLS estimate.

Lemma 7 (Statistical Properties of OLS) Assume the data follows a model Yi = xT
i ✓ + Di

with {D
1

, . . . , Dn} uncorrelated random variables with mean zero and standard deviation � > 0,
and ✓,x

1

, . . . ,xn are deterministic vectors in Rd. Let the matrix X 2 Rn⇥d enumerate those such
that Xi = xT

i for all i = 1, . . . , n, and assume that X has full rank such that the inverse (XTX)�1

is defined uniquely. Let ✓n be the LS estimate (as in Chapter 2) solving

Vn(✓) = min
✓

1

2

nX

i=1

(Yi � xT
i ✓)

2, (5.47)

then

• The estimate ✓n is unbiased, that is E[✓n] = ✓
0

.

• The covariance of the estimate is given as

E
⇥
(✓

0

� ✓n)(✓0 � ✓n)
T
⇤
= �2(XTX)�1. (5.48)

• The estimate Vn(✓n) implies an unbiased estimate of � as

�2 =
2

n� d
E[Vn(✓n)]. (5.49)

Proof: At first, we have the normal equations characterizing ✓n as

✓n = (XTX)�1XTY = (XTX)�1XT (X✓
0

+D). (5.50)
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E[θn] = θ0 θ0

n

θn

θn

f(θn) 

θn

f(θn) 

Consistent

Unbiased

Density of 
Estimate

Asymptotic 
Density of 
Estimate

θ0

Figure 5.4: Schematical illustration of an unbiased estimator ✓n of ✓
0

. Here n = 1, 2, . . . denotes the
size of the samples {Y

1

, . . . , Yn} on which the estimator ✓n = g(Y
1

, . . . , Yn) is based. The estimator
is called unbiased if one has for any n that E[✓n] = ✓

0

. The grey area denoted the possible estimates
✓n for di↵erent samples {Y

1

, . . . , Yn}. The cross-section of this area for a given n equals the sample
distribution, denoted as the 2 bell-shaped curves at the bottom.
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where Y = (Y
1

, . . . , Yn)T and D = (D
1

, . . . , Dn)T are two random vectors taking values in Rn.
Then

✓n = (XTX)�1XT (X✓
0

+D) = (XTX)�1(XTX)✓
0

+(XTX)�1XTD = ✓
0

+(XTX)�1XTD. (5.51)

Taking the expectation of both sides gives

E[✓n] = E
⇥
(XTX)�1XT (X✓

0

+D)
⇤
= ✓

0

+ E
⇥
(XTX)�1XTD

⇤
= ✓

0

+ (XTX)�1XTE [D] = ✓
0

,
(5.52)

since the vectors ✓
0

, {xi} are deterministic, and hence E[✓
0

] = ✓
0

,E[X] = X. This proves unbiased-
ness of the estimator. Note that the assumption of the vectors ✓

0

,x
1

, . . . ,xn being deterministic is
crucial.

Secondly, the covariance expression can be derived as follows. Here the crucial insight is that
we have by assumption of zero mean i.i.d. noise (or white noise) that E[DDT ] = �2In where
In = diag(1, . . . , 1) 2 Rn⇥n. Then we have from eq. (5.51) that

E
⇥
(✓

0

� ✓n)(✓0 � ✓n)
T
⇤

= E
⇥
((XTX)�1XTD)(DTX(XTX)�T )

⇤

= (XTX)�1XTE[DDT ]X(XTX)�T

= �2(XTX)�1(XTX)(XTX)�T

= �2(XTX)�1. (5.53)

Thirdly, the minimal value of the minimization problem is given as

Vn(✓n) =
1

2
(Y �X✓n)

T (Y �X✓n)

=
1

2

�
Y TY � 2Y TX✓n + ✓TnX

TX✓n
�

=
1

2

�
Y TY � 2Y TX(XTX)�1XTY + Y TX(XTX)�1(XTX)(XTX)�1XTY

�

=
1

2

�
Y TY � Y TX(XTX)�1XTY

�
. (5.54)

Hence

2Vn(✓n) = Y T
�
In �X(XTX)�1XT

�
Y

= (X✓
0

+D)T
�
In �X(XTX)�1XT

�
(X✓

0

+D)

= DT
�
In �X(XTX)�1XT

�
D. (5.55)

Then, using the properties of the trace operator tr(xTAx) = tr(xxTA) and tr(A+B) = tr(A) +
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tr(B) for A,B 2 Rn⇥n and x 2 Rn gives

2E[Vn(✓n)] = E tr
�
DT

�
In �X(XTX)�1XT

�
D
�

= E tr
�
DTD

�
In �X(XTX)�1XT

��

= tr
�
E[DTD]

�
In �X(XTX)�1XT

��

= �2 tr(In �X(XTX)�1XT )

= �2

�
tr(In)� tr(X(XTX)�1XT )

�

= �2

�
tr(In)� tr((XTX)(XTX)�1)

�

= �2 (tr(In)� tr(Id)) = �2(n� d). (5.56)

⇤
This result is slightly generalized as follows.

Theorem 6 (Gauss-Markov Theorem) Given a model with deterministic values {x
1

, . . . ,xn} ⇢
Rd with fixed but unknown ✓

0

2 Rd such that

Yi = xT
i ✓0 +Di, (5.57)

where {D
1

, . . . , Dn} are uncorrelated, all have zero mean E[Di] = 0 and have (finite) equal variances,
i.e. E[Di] = · · · = E[Dn] (i.e. {Di}i is homoskedastic). Suppose that we have an estimator
✓n = g(Y

1

, . . . , Yn). Then its performance can be measured as the variance

V (✓n) = E k✓
0

� ✓nk2 . (5.58)

Then the linear estimator achieving the minimal possible variance V (✓n) such that it is unbiased
E[✓n] = ✓

0

is given as

✓n = argmin
✓

1

2

nX

i=1

(Yi � xT
i ✓)

2. (5.59)

This estimator is hence called the Best Linear Unbiased Estimator (BLUE).

An estimator ✓n(y1, . . . , yn) is linear if it satisfies the superposition principle, i.e. if ✓̂ = ✓n(y1, . . . , yn)
and ✓̂0 = ✓n(y0

1

, . . . , y0n), i↵ ✓̂ + ✓̂0 = ✓n(y1 + y0
1

, . . . , yn + y0n). In other words, the estimator can be
written as a linear combination of the outputs, or

✓n,j(y1, . . . , yn) =
nX

i=1

ci,jyi, 8j = 1, . . . , d, (5.60)

where {ci,j} do not depend on {yi}. Indeed the OLS estimate obeys this form as it can be written
as

✓n = (�T�)�1�Ty, (5.61)

according to the formulae in chapter 2.
In turn we also have that the least squares estimate needs modification if the coloring of the

noise is known to equal a matrix R. The reasoning goes as follows. Assume again that the linear
model

Yi = xT
i ✓0 +Di, (5.62)
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with x
1

, . . . ,xn, ✓ 2 Rd, but where {D
1

, . . . , Dn} are zero mean random variables with covariance R
such that Rij = E[DiDj ] for all i, j = 1, . . . , n. Then the estimator ✓n of ✓

0

with minimal expected
error is given as

✓n = argmin
✓

1

2
(Y �X✓)TR�1(Y �X✓). (5.63)

This estimator is known as the Best Linear Unbiased Estimate (BLUE). The following simple
example illustrates this point:

Example 37 (Heteroskedastic Noise) Consider again the model

Yi = ✓
0

+Di, (5.64)

where ✓
0

2 R and {Di}i are uncorrelated (white) zero mean stochastic variables, with variances
E[D2

i ] = �2

i > 0 which are di↵erent for all samples, i.e. for all i = 1, . . . , n. Then the BLUE
estimator becomes

✓n = argmin
nX

i=1

(Y � 1n✓0)
TM(Y � 1n✓0), (5.65)

where

M =

2

64
��2

1

0
. . .

0 ��2

n

3

75 . (5.66)

The solution is hence given as
1TnR1n✓n = 1TnRY, (5.67)

where Y = (Y
1

, . . . , Yn)T takes elements in Rn. Equivalently,

✓n =
1Pn

i=1

�2

i

nX

i=1

Yi

�2

i

. (5.68)

Note that the influence of a sample Yi in the total sum is small in case it is inaccurate, or �i is
large, and vice versa.

Lets now give an example where the inputs are stochastic as well, or

Example 38 (Stochastic Inputs) Assume the observations {Yi}i are modeled using the random
vectors {Xi}i taking values in Rd, ✓

0

2 Rd is deterministic but unknown

Yi = XT
i ✓0 +Di, (5.69)

where {Di}i are zero mean i.i.d. and are assumed to be independent from {Xi}. This assumption
is crucial as we will see later. Then the above derivations still hold more or less. Consider the LS
estimate ✓n. It is an unbiased estimate of ✓

0

as could be seen by reproducing the above proof. Let
D = (D

1

, . . . , Dn)T , then

E[✓n] = E
⇥
(XTX)�1XT (X✓

0

+D)
⇤
= ✓

0

+ E
⇥
(XTX)�1XTD

⇤
= ✓

0

+ E[(XTX)�1XT ]E [D] = ✓
0

,
(5.70)
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where X is the random matrix taking elements in Rn⇥d such that eTi X = Xi for all i = 1, . . . , n.
Here we need the technical condition that E[(XTX)�1] exists, or that XTX is almost surely full
rank. This equation implies asymptotic unbiasedness of the estimator ✓n. Similarly, one can proof
that the covariance of ✓n is given as

E
⇥
(✓

0

� ✓n)(✓0 � ✓n)
T
⇤
= �2E

⇥
(XTX)�1

⇤
. (5.71)

Note that E[(XTX)�1] 6= (E[XTX])�1 exactly, although such relation holds asymptotically since
limn!1 1

nXiXT
i ⇡ E[XXT ]. Finally, the minimal value Vn(✓n) satisfies

�2 =
2

n� d
E[Vn(✓n)]. (5.72)

The key property which causes this to work is the fact that E[XtDt] 6= E[Xt]E[Dt]. This condition
was trivially satisfied if xt were deterministic, leading to the many optimality principles of least
squares estimates as stated in the Gauss-Markov theorem.

5.4 Instrumental Variables

Example 39 (Dependent Noise) Consider again the following model using the definitions as
given in the previous example:

Yt = XT
t ✓0 +Dt, (5.73)

and Dt is a random variable with bounded variance and zero mean, then the least squares estimate
✓n is given by the solution of

✓n =

 
1

n

nX

t=1

XtX
T
t

!�1

 
1

n

nX

t=1

XtYt

!
. (5.74)

In case n ! 1, one has by definition that

✓n =
�
E
⇥
XtX

T
t

⇤��1 E [XtYt] . (5.75)

Assuming that E[XtXT
t ] exists and is invertible, one can write equivalently that

✓
0

� ✓n = ✓
0

�
�
E
⇥
XtX

T
t

⇤��1 E [XtYt]

=
�
E
⇥
XtX

T
t

⇤��1 E
⇥
XtX

T
t

⇤
✓
0

�
�
E
⇥
XtX

T
t

⇤��1 E
⇥
Xt(X

T
t ✓0 +Dt)

⇤

=
�
E
⇥
XtX

T
t

⇤��1 E [XtDt] . (5.76)

And the estimate ✓n is only (asymptotically) unbiased if E [XtDt] = 0d.

This reasoning implies that we need di↵erent parameter estimation procedures in case the noise is
dependent on the inputs. Such condition is often referred to as the ’colored noise’ case. One way to
construct such an estimator, but retaining the convenience of the LS estimator and corresponding
normal equations goes as follows.

We place ourselves again in a proper stochastic framework, where the system is assumed to be

Yi = XT
i ✓0 +Di, (5.77)
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where X
1

, . . . , Xn, ✓0 2 Rd are random vectors, and {Di} is zero mean stochastic noise. As in the
example this noise can have a substantial coloring, and an ordinary least squares estimator wont
give consistent estimates of ✓

0

in general. Now let us suppose that we have the random vectors
{Zt}t taking values in Rd such that

E [ZtDt] = 0d. (5.78)

That is, the instruments are orthogonal to the noise. Then the IV estimator ✓n is given as the
solution of ✓ 2 Rd to the following system of linear equations

nX

t=1

Zt(Yt �XT
t ✓) = 0d, (5.79)

where expectation is replaced by a sample average. That means that we estimate the parameters
by imposing the sample form of the assumed independence: that is the estimated model necessarily
matches the assumed moments of the involved stochastic quantities. Note that this expression looks
similar to the normal equations. If

Pn
t=1

(ZtXT
t ) were invertible, then the solution is unique and

can be written as

✓n =

 
nX

t=1

ZtX
T
t

!�1

 
nX

t=1

ZtY
T
t

!
. (5.80)

So the objective for us id to design instruments, such that

• The instruments are orthogonal to the noise, or E [ZtDt] = 0d.

• The matrix E[ZtXT
t ] were of full rank, such that also with high probability

Pn
t=1

(ZtXT
t ) has

a unique inverse.

Example 40 A common choice in the context of dynamical systems for such instruments goes as
follows. Assume that the random vectors Xt consists of delayed elements of the output Yt�⌧ of the
system which cause the troublesome correlation between Dt and Xt. This is for example typically
the case in an ARMAX model. Then a natural choice for the instruments would be to take delayed
entries of the input {Ut}t of the system

Zt = (Ut�1

, . . . , Ut�d) , (5.81)

which takes values in Rd. This is a good choice if the inputs were assumed to be independent of the
(colored) noise.
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