
Chapter 6

Prediction Error Methods

”How far can we go by optimizing the predictive performance of an estimated
model?”

This chapter studies the parameter estimation technique called the Prediction Error Method
(PEM). The idea is that rather than a plain least squares approach, or a statistical maximum
likelihood approach there is a third important principle in use for estimating the parameters of
a dynamic model based on recorded observations. This technique considers the accuracy of the
predictions computed for the observations, rather than the model mismatch are the likelihood
of the corresponding statistical model. This technique is perhaps the most tightly connected to
systems theory as it explicitly exploits the dynamical structure of the studied system. Those three
design principles are represented schematically in Fig. (6.1). In a number of cases the three design
decision leads to the same estimators as will be discussed in some detail.

Least Squares 
estimation (LS) 

Maximum Likelihood 
(ML)Prediction Error Method 

(PEM)

ARX

Figure 6.1: Schematic Illustration of the di↵erent approaches which one could take for estimation
of parameters.
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6.1. IDENTIFICATION OF AN ARX MODEL

6.1 Identification of an ARX model

Let’s start the discussion with a study of a convenient model. The result is not too di�cult to
obtain, but the consecutive steps in the analysis will come back over and over in later sections.
Consider a system relating two signals {ut}1t=�1 and {yt}1t=�1 which is modeled as

A(q�1)yt = B(q�1)ut + et, 8t = . . . , 0, 1, , 2, . . . , (6.1)

where for given na, nb > 0 one has A(q�1) = 1+ a
1

q�1+ · · ·+ anaq
�na and B(q�1) = b

1

q�1+ · · ·+
bnbq

�nb , with fixed but unknown coe�cients {a
1

, . . . , ana , b1, . . . , bnb}. Here the residuals {et}t are
small in some sense, but unknown otherwise. This system can be written equivalently as

yt = 'T
t ✓ + et, 8t = . . . , 0, 1, , 2, . . . , (6.2)

where (
'T
t = (�yt�1

, . . . ,�yt�na , ut�1

, . . . , ut�nb)
T 2 Rna+nb , 8t

✓ = (a
1

, . . . , ana , b1, . . . , bnb)
T 2 Rna+nb .

(6.3)

The model is linear in the parameters, hence it is already known how to estimate the parameter
vector ✓ from given samples {('t, yt)}nt=1

induced by the signals {ut}t and {yt}t. Note that if
the signals are only recorded at time instances t = 1, 2, . . . , n, one can only construct the samples
{('t, yt)}nt=1+max(na,nb)

. - for notational convenience we shall assume further that the signals are

observed fully such that {('t, yt)}nt=1

can constructed. The Least Squares (LS) estimation problem
is

min
ˆ✓=(a1,...,ana ,b1,...,bnb

)

nX

t=1

(yt + a
1

yt�1

+ · · ·+ anayt�na � b
1

ut�1

� · · ·� bnbut�nb)
2 =

nX

t=1

('t✓̂� yt)
2,

(6.4)
and the estimate ✓̂ is given as the solution to

 
1

n

nX

t=1

't'
T
t

!
✓̂ =

 
1

n

nX

t=1

yt't

!
, (6.5)

which are known as the normal equations associated to problem (6.4). If the matrix

� =

 
1

n

nX

t=1

't'
T
t

!
, (6.6)

is of full rank the estimate is unique and is given as

✓̂ = ��1

 
1

n

nX

t=1

yt't

!
. (6.7)

Such approach is also related as an ’equation error method’ since the errors we minimize derive
directly from {et}t which occur as equation errors in (6.1).

The normal equations can readily be solved with the numerical tools described in Chapter 1.
For the statistical properties it is of crucial importance which setup is assumed. We will work with
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6.1. IDENTIFICATION OF AN ARX MODEL

the assumption that {et}t are modeled as random variables, and hence so are {yt}t and {'t}nt=1

.
This is an important di↵erence with a classical analysis of a LS approach as given in Section ... as
there one assumes 't is deterministic. The reason that this di↵erence is important is that when
taking expectations various quantities, it is no longer possible to treat � nor ��1 as a constant
matrix.

The common statistical assumptions used to model and analyze this problem go as follows.
Formally, let the signals {Ut}t and {Yt}t be stationary stochastic processes related as

Yt = 'T
t ✓0 + Vt, 8t = . . . , 0, 1, , 2, . . . , (6.8)

where ✓
0

2 Rna+nb is the fixed but unknown ’true’ parameter vector, the vector 't = (�Yt�1

, . . . , Yt�na , Ut�1

, . . . , Ut�nb)
T

which takes values in Rna+nb , and where we assume that {Vt}t is a stationary stochastic process
independent of the input signal {Ut}t. If an estimate ✓̂ is ’good’, it should be in some sense ’close’
to ✓

0

. Lets examine then how good the LS estimator is. From the normal equations one gets

✓̂ � ✓
0

=

 
1

n

nX

t=1

't'
T
t

!�1

 
1

n

nX

t=1

'tYt

!
�
 
1

n

nX

t=1

't'
T
t

!�1

 
1

n

nX

t=1

't'
T
t

!
✓
0

=

 
1

n

nX

t=1

't'
T
t

!�1

 
1

n

nX

t=1

Vt't

!
. (6.9)

Under weak conditions, the normalized sums tend to their expected values when n tends to infinity.
Hence ✓̂ ! ✓

0

, or ✓̂ is consistent if
(
E
⇥
't'T

t

⇤
is nonsinguar

E['tVt] = 0.
(6.10)

The first condition (’nonsingular’) is often satisfied, but there are a few important exceptions:

• The inputs {Ut} is not su�ciently rich: it is not PE of order nb.

• The data is noise-free (i.e. Vt = 0 for all t), and the model orders are chosen too high: this
implies that A

0

(q�1) and B
0

(q�1) associated with ✓
0

have common factors (are not coprime).

• The input signal {Ut}t is generated by a linear low-order feedback law from the output {Yt}t.

Unlike the ’nonsingular’ condition, the requirement E['tVt] = 0 is in general not satisfied. An
important exception is when {Vt}t is white noise, i.e. is a sequence of uncorrelated random variables.
In such case, {Vt}t will be uncorrelated with all past data, and in particular Vt will be uncorrelated
with 't, implying the condition.

The LS estimation technique is certainly simple to use. In case those requirements are not at
all satisfied, we need modifications to the LS estimate to make it ’work’, i.e. make the estimate
consistent or at least not too biased. We will study two such modifications.

• Minimization of the prediction error for ’more detailed’ model structures. This idea leads to
the class of Prediction Error Methods (PEM) dealt with in this chapter.

• Modification of the normal equations associated to the LS estimator. This idea leads to the
class of Instrumental Variables dealt with in Chapter ... .
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6.2. OPTIMAL PREDICTION AND PEM

6.2 Optimal Prediction and PEM

A model obtained by identification can be used in many ways depending on the purpose of modeling.
In may applications the aim of the model is prediction in some way. It therefore makes sense to
determine the model such that the prediction error would be minimal. Let us consider the SISO
case at first. We denote the model prediction error here as

✏t(✓) = yt � ft|t�1

(✓), 8t = 1, 2, . . . , (6.11)

where ✓ represents the parameters of the current model, and ft|t�1

(✓) represents the prediction of
the outcome yt using all past information and the model determined by ✓. In case of an ARX model
as described in the previous chapter, we have obviously that

ft|t�1

(✓) = 'T
t ✓. (6.12)

In the context of PEM methods one is in general interested in more general models. Suppose a
general LTI describes the signals {ut}t and {yt}t as

yt = G(q�1, ✓)ut +H(q�1, ✓)Vt, 8t = . . . , 0, 1, . . . , (6.13)

where we assume that {Vt}t is a stochastic process with E[VsV T
t ] = �2�s,t with �s,t = 1 if s = t,

and zero otherwise. For notational convenience, assume that G(0; ✓) = 0, i.e. that the model has
at least one pure delay from input to output. Then, the optimal predictor can be written as

ft|t�1

(✓) = L
1

(q�1, ✓)yt + L
2

(q�1, ✓)ut, 8t = . . . , 0, 1, . . . , (6.14)

which is a function of the past data only if L
1

(0, ✓) = L
2

(0, ✓) = 0. Suppose we have for our model
(H,G) corresponding mappings (L

1

, L
2

). Now, a PEM method will estimate the parameter vector
✓ by optimizing the prediction performance, i.e.

✓̂ = argmin
✓

1

n

nX

t=1

`(✏t(✓)), (6.15)

where ` : R ! R is a loss-function. E.g. `(e) = e2.
Now we study the question how to go from an LTI model (G,H) to the corresponding predictors

(L
1

, L2). Again let us introduce ideas using a series of elementary examples.

Example 41 (White Noise) Assume a realization {e
1

, e
2

, . . . , et} of zero mean white (uncorre-
lated) noise. Given the values of (e

1

, e
2

, . . . , et�1

), the best estimate of et in L
2

sense is then êt = 0,
That is

êt = argmin
Pt+1

⌧=1 h⌧q�⌧

E
 
et �

t+1X

⌧=1

h⌧et�⌧

!
2

= argmin
Pt+1

⌧=1 h⌧q�⌧

E[e2t ] +
t�1X

⌧=1

h⌧E[et�⌧ ], (6.16)

and the minimum is clearly achieved when h
1

= · · · = h⌧ = 0.

Example 42 (FIR(d)) Given a deterministic sequence {ut}nt=1

, and given a realization {yt}t of
a process {Yt}nt=1

which satisfies a FIR system, or

Yt = b
1

ut�1

+ · · ·+ bdut�d +Dt, (6.17)
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6.2. OPTIMAL PREDICTION AND PEM

where {D
1

, . . . , Dn} is a zero mean white noise sequence with bounded variance. Then the optimal
prediction at instance t+ 1 is clearly

ŷt+1

= b
1

ut + · · ·+ bdut�d+1

, (6.18)

for any t = d, . . . , n� 1.

Example 43 (AR(d)) Given a realization {yt}t of a process {Yt}nt=1

which satisfies a AR(d)
system, or

Yt + a
1

Yt�1

+ . . . adYt�d = Dt, (6.19)

where {D
1

, . . . , Dn} is a zero mean white noise sequence with bounded variance. Then the optimal
prediction at instance t+ 1 is clearly

ŷt+1

= a
1

yt + · · ·+ adyt�d+1

, (6.20)

for any t = d, . . . , n� 1.

Example 44 (MA(d)) Given a realisation {yt}t of a process {Yt}nt=1

which satisfies a MA(d)
system, or

Yt = Dt + c
1

Dt�1

+ . . . cdDt�d, (6.21)

where {D
1

, . . . , Dn} is a zero mean white noise sequence with bounded variance. Equivalently,

Yt = C(q�1)Dt, (6.22)

for any t = d, . . . , n� 1. Thus
(
Dt = C�1(q�1)Yt

Yt = (C(q�1)� 1)Dt +Dt,
(6.23)

where the second equality separates nicely the contribution of the past noise Dt�1

, Dt�2

, . . . on
which we have some knowledge, and the present term Dt which is entirely unknown to us. This is a
consequence of the fact that C is a monomial, i.e. the zeroth order term equals 1. Then it is not too
di�cult to combine both equations in (6.23) and then we find the corresponding optimal predictor
as

Ŷt =
�
C�1(q�1)� 1

�
Yt. (6.24)

Those elementary reasonings lead to the optimal predictors corresponding to more complex models,
as e.g.

Example 45 (ARMAX(1,1,1) model) Consider the stochastic signals {Ut}t and {Yt}t both tak-
ing values in R which follow a fixed but unknown system

Yt + aYt�1

= bUt�1

+ Vt + cVt�1

, 8t = . . . , 0, . . . , (6.25)

where {Vt}t is zero mean white noise with E[VtVs] = �t,s�2. The parameter vector is ✓ = (a, b, c)T 2
R3. Assume Vt is independent of Us for all s < t, and hence the model allows for feedback from
{Yt}t to {Ut}t. The output at time t satisfies

yt = (�aYt�1

+ bUt�1

+ cVt�1

) + Vt, 8t = . . . , 0, . . . , (6.26)
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6.2. OPTIMAL PREDICTION AND PEM

and the two terms on the right hand side (r.h.s. ) are independent by assumption. Now let y⇤t 2 R
be any number serving as a prediction, then one has for t that

E[Yt � y⇤t ]
2 = E[�aYt�1

+ bUt�1

+ cVt�1

]2 + E[Vt]
2 � �2, (6.27)

giving as such a lower-bound to the prediction error variance. An optimal predictor {ft|t�1

(✓)}t is
one which achieves this lower-bound. This is the case for

ft|t�1

(✓) = �aYt�1

+ bUt�1

+ cVt�1

. (6.28)

The problem is of course that this predictor cannot be used as it stands as the term Vt�1

is not
measurable. However, it Vt�1

may be reconstructed from past data as the residual in the previous
iteration, and as such

ft|t�1

(✓) = �aYt�1

+ bUt�1

+ cVt�1

= �aYt�1

+ bUt�1

+ c (Yt�1

+ aYt�2

� bUt�2

� cVt�2

)

= �aYt�1

+ bUt�1

+ c (Yt�1

+ aYt�2

� bUt�2

)� c2 (Yt�2

+ aYt�3

� bUt�3

� cVt�3

)

= . . .

=
t�1X

i=1

(c� a)(�c)i�1Yt�i � a(�c)t�1Y
0

+ b
t�1X

i=1

(�c)i�1Ut�i � (�c)tV
0

. (6.29)

Under assumption that |c| < 1 the last term can be neglected for large t as it will have an exponen-
tially decaying transient e↵ect. Then we get a computable predictor. However we reorder terms to
get a more practical expression as

ft|t�1

(✓) = f(t� 1|t� 2, ✓) + (c� a)Yt�1

+ bUt, (6.30)

which gives a simple recursion for computing the optimal prediction corresponding to past obser-
vations and the model parameter vector ✓. We can compute the corresponding prediction error
✏t(✓) = Yt � ft|t�1

(✓) similarly as

✏t(✓) + c✏t�1

(✓) = Yt + cYt�1

� ((c� a)Yt�1

+ bUt�1

) = Yt + aYt�1

� bUt�1

, (6.31)

for any t = 2, . . . , n. This recursion needs an initial value ✏t(✓) which is in general unknown and
often set to 0. Observe that we need the statistical framework only for a definition of what an
optimal predictor means exactly as in (6.27).

The above analysis can be stated more compactly using the polynomials,

Example 46 (An ARMAX(1,1,1), bis) Consider {ut}t and {yt}t obeying the system

(1 + aq�1)yt = (bq�1)ut + (1 + cq�1)et, (6.32)
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(
f(t|t� 1, ✓) = H�1(q�1, ✓)G(q�1, ✓)Ut +

�
1�H�1(q�1, ✓)

�
Yt

✏t(✓) = Vt = H�1(q�1, ✓)(Yt �G(q�1, ✓)Ut).
(6.37)

Figure 6.2: The optimal expected least squares predictor for a general LTI.

for all t. Then

yt =
(bq�1)

(1 + aq�1)
ut +

(1 + cq�1)

(1 + aq�1)
et

=
(bq�1)

(1 + aq�1)
ut +

(c� a)q�1

(1 + aq�1)
et +

(1 + aq�1)

(1 + aq�1)
et

=
(bq�1)

(1 + aq�1)
ut +

(c� a)q�1

(1 + aq�1)

✓
(1 + aq�1)yt � (bq�1)ut

(1 + cq�1)

◆
+ et

=

✓
(bq�1)

(1 + aq�1)
� (c� a)q�1

(1 + aq�1)

(bq�1)

(1 + cq�1)

◆
ut +

(c� a)q�1

(1 + aq�1)

(1 + aq�1)

(1 + cq�1)
yt + et

=
(bq�1)

(1 + cq�1)
ut +

(c� a)q�1

(1 + cq�1)
yt + et, (6.33)

and again because of the noise terms et cannot be predicted from the past or the model parameters
✓, the best any predictor can do is

ft|t�1

(✓) =
(bq�1)

(1 + cq�1)
ut +

(c� a)q�1

(1 + cq�1)
yt, (6.34)

yielding the result. When working with filters in this way it is assumed that data are available from
the infinite past. Since this wouldn’t be the case in practical situations, one has to take into account
transient e↵ects before implementing thus predictors.

In general the derivation goes as follows. Assume the data (y
1

, y
2

, . . . ) and (u
1

, u
2

, . . . ) follows
an LTI model where

yt+1

= H(q�1; ✓
0

)ut+1

+G(q�1; ✓
0

)et+1

. (6.35)

where (
H(q�1; ✓

0

) = 1 + h
1

q�1 + · · ·+ hmhq
�mh

G(q�1; ✓
0

) = 1 + g
1

q�1 + · · ·+ gmgq
�mg ,

(6.36)

wheremh � 1 andmg � 1 denote the orders of both monic polynomials, and ✓
0

= (h
1

, . . . , hmh , g1, . . . , gmg ) 2
Rmg+mh�2. Then we face the question what value of

6.3 Statistical Analysis of PEM methods

The statistical analysis of PEM estimates starts o↵ similar as in the least squares case. Assume
that the observed signals satisfy a stochastic signal, or that

Yt = G(q�1, ✓
0

)Ut +G(q�1, ✓
0

)Dt. (6.38)
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• The observed signals {ut}nt=1

⇢ R and {yt}nt=1

⇢ R are assumed to be samples from quasi-
stationary stochastic processes {Ut}t and {Yt}t.

• The noise {Dt} is assumed to be a stationary process with zero mean.

• The input is with high probability Persistently Exciting (PE) of su�cient order. that is
E[VtV T

t ] � 0 where Vt = (Ut�1

, . . . , Ut�d), and hence
Pn

t=1

utuT
t � 0 where ut = (ut�1

, . . . , ut�d) 2
Rd.

• The filters G(q�1, ✓) and H(q�1, ✓) are smooth (di↵erentiable) functions of the parameters.

Then a PEM approach would be to solve for ✓

V ⇤
n = min

✓
Vn(✓) =

1

2

X

t=1

n
�
Yt � (H�1(q�1, ✓)G(q�1, ✓)Ut +

�
1�H�1(q�1, ✓)

�
Yt)
�
2

. (6.39)

This approach is in general di↵erent from a LS estimate. We also need the following assumption,
namely that

• The Hessian V 00
n (✓) is non-singular at least for the parameters ✓ close to the true parameters

✓
0

. This implies that no di↵erent parameters can solve the PEM objective asymptotically,
and is thus in a sense closely related to Persistency of Excitation (PE).

The proof that the PEM would result in accurate estimates in that case is quite involved, but the
main reasoning is summarized in Fig. (6.3). This result is then found strong enough also to quantify
the variance of the estimates if n tends to infinity. Specifically we have that

p
n(✓n � ✓

0

) ⇠ N (0,P), (6.40)

where
P = E[D2

t ]E
⇥
't(✓0)'t(✓0)

T
⇤�1

, (6.41)

and where

't(✓0) =
d✏t(✓)

d✓

���
✓=✓0

. (6.42)

That is, the estimates are asymptotically unbiased and have asymptotic variance which is given by
the Fisher information matrix based on the gradients of the prediction errors evaluated at the true
parameters.

6.4 Computational Aspects

The practical di↵erence of a PEM approach to a LS approach is that the solution is not given
in closed form as the normal equations before did. In general, one has to resort to numerical
optimization tools to solve the optimization problem. While good software implementations exists
that can do this task very accurate, it is useful to write out some common approaches for getting
a feeling how to interpret results from such a software.

The prototypical approach goes as follows. Let us abstract the problem as the following opti-
mization problem over a vector ✓ 2 Rd as

✓⇤ = argmin
✓

J(✓), (6.43)
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Vn

lim  Vn= V0

θ

Vn(θ)

Figure 6.3: Schematic example of the PEM cost function. Here ✓ denotes the parameter vector
to be minimized over. In case only a finite number of samples n is available, the PEM objective
is a noisy version of the asymptotical loss V

0

(✓) = limn!1 Vn(✓). Two results are stated then:
(i) the true parameters ✓

0

are the minimizer of the asymptotic objective function, and (ii) the
asymptotic objective function V

0

✓) di↵ers not too much from the sample objective function Vn(✓)
for any (’uniform) ✓. Hence the minimizer ✓n to Vn is not too di↵erent from the true parameters.

where J : Rd ! R is a proper cost function (i.e. a minimal value exists). We have an iterative
regime, and in each iteration the previous estimate is refined slightly. Formally, we generate a
sequence of vectors from an initial estimate ✓(0), obeying the recursion

✓(k+1) = ✓(k) + �b(J, ✓(k)), (6.44)

where b(J, ✓(k)) 2 Rd is a correction (’step’) which refines the estimator. The algorithm then
hopefully converges, in the sense that ✓(k) ! ✓⇤ when k increases. See Fig. (6.4.a) for an cost
function in 2D, and Fig. (6.4.b) for an iterative algorithm at work in 1D. Now di↵erent algorithms
specialize further using di↵erent quantities.

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

�1

J n(�
1)

�(2)
�(1)

�(3)�(5)�(6)�(7)
�(4)

�� = �n

Figure 6.4: An example of an iterative optimization routine of J over a parameter ✓.

The prototypical algorithm goes as follows. Here, the correction factor is determined by using a
quadratic approximation of the cost function J at the current estimate ✓(k). The algorithm follows
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the recursion

✓(k+1) = ✓(k) � ↵k

⇣
V 00
n (✓(k))

⌘�1

V 0
n(✓

(k)), (6.45)

where

• ↵k is the step size, typically taken as a positive decreasing function of k.

• V 0
n(✓n) 2 Rd denotes the gradient of the cost function J at ✓(k).

• V 00
n (✓n) 2 Rd⇥d denotes the Hessian matrix of the cost function J at ✓(k).

This algorithm is referred to as Newton-Raphson.
In the optimal point ✓⇤ for the PEM problem one has a simplified approximative expression for

the cost function J(✓⇤) given as

V 00
n (✓⇤) ⇡ 2

n

nX

i=1

 T
t (✓

⇤)H t(✓
⇤), (6.46)

where H is a given matrix, and  t(✓⇤) equals the (first order) influence of the tth sample on the
loss function of the PEM objective. Using this approximation in an iterative optimization gives the
Gauss-Newton recursive algorithm given as

✓(k+1) = ✓(k) � ↵k

 
nX

i=1

 T
t (✓

(k))H t(✓
(k))

!�1

 
nX

i=1

 T
t (✓

⇤)H✏t(✓(k))

!
, (6.47)

where here ✏t(✓(k)) denotes the prediction error on yt using the past samples and the model with
parameters ✓(k). When n is quite large both algorithms (6.48) and (6.45) behave quite similarly.
But in general, the Newton-Raphson converges with quadratic speed 1/n2. The Gauss-Newton
approach converges ’only’ (super-) linear, but has the additional advantage that each iteration of
the algorithm can be computed and stored much more e�ciently.

If computational issues are even more important in the case at hand one may resort to a steepest
descent algorithm, implementing the recursion

✓(k+1) = ✓(k) � ↵kV
0
n(✓

(k)), (6.48)

where ✓(0) 2 Rd is an appropriate initial estimate. Such algorithm is referred to as a steepest
descent or gradient descent algorithm.

There are three important caveats when using such an approaches.

• The numerical software might be stuck in local minima, most likely giving parameter estimates
which are not useful. This depends largely on the shape of the loss function. If Vn were
(almost) a positive quadratic function, then there are no such local ’false’ minima a numerical
optimization routine could be stuck in. A simple way to circumvent this problem is to let the
optimizer run based on a number of di↵erent starting points: if the optima are not mostly not
equal, the problem of local minima is severely present. On the other hand, if the optimizers
were equal for most of them, it is not too large a stretch to assume that the global minimizer
were found successfully.
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6.4. COMPUTATIONAL ASPECTS

• In a number of cases the loss function Vn might not be di↵erentiable at certain values for ✓,
or lead to large values, preventing the solver to converge properly. This is typically the case
when the underlying dynamics are almost unstable, and slight deviations of the parameters
might lead to unbounded predictions.

• The uncertainties computed by the software based on the discussion in the previous section is
often not valid for finite n. Specifically, the derivation there assumes that ✓n is close enough
to ✓

0

in order to admit a quadratic expansion of the loss between either. This is clearly not
valid ✓n were only a local minimizer. Hence, the estimated variances in software routines are
valid conditioned on the fact that the optimizer worked well.
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