
14.1. DYNAMIC MODELS

14.1.2 Excercises + solution

Exercise 1.0: Hello world

1. Given a discrete system G(z) = K
⌧�z with K = 1 and ⌧ = 2. Is it BIBO stable? Why/not?

2. Given a system which outputs positive values for any input. Is it LTI? Why/not?

3. Can you solve a least squares estimate for ✓ for a system satisfying xi✓ = yi for any {(xi, yi)}i?
Why/not?

4. Is the median estimate optimal in a least squares sense? Why/not?

5. If we are to model a certain behavior and we know some of the physics behind it - should we
go for a black box model? Why/not?

6. If we have a very fast system (time constants smaller than O(10�2)s). Can we get away with
slow sampling? Why/not?

7. Does a non-causal model allow an impulse representation? Why/not?

8. Is a sequence of two nontrivial LTIs identifiable from input-output observations? Why/not?

9. Is an ARMAX system linear in the parameters of the polynomials? Why/not?
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14.1. DYNAMIC MODELS

Exercise 1.1 (6.1): Stability boundary for a second-order system.

Consider the second-order AR model

yt + a
1

yt�1

+ a
2

yt�2

= et

Derive and plot the area in the (a
1

, a
2

) 2 R2-plane for which the model is asymptotically stable.
Solution:
The characteristic equation is

z2 + a
1

z + a
2

= 0.

If z
1

, z
2

denotes the roots of this equation, we have that

a
1

= �(z
1

+ z
2

), a
2

= z
1

z
2

.

Consider the limiting case with one or both roots on the unit circle.

• One root in z = 1, the other one inside the interval z 2]� 1, 1[.

a
1

= �1� z
2

, a
2

= z
2

) a
2

= �1� a
2

• One root in z = �1, the other one inside the interval z 2]� 1, 1[.

a
1

= �1� z
2

, a
2

= �z
2

) a
2

= �1 + a
2

• Two complex conjugate roots z
1

, z
2

= exp(±i!) with ! 2 (0,⇡]

a
1

= �2 cos!, a
2

= 1 ) a
2

2 [�2, 2]

These cases define a closed contour that encloses the stability area as in Figure (14.1.2).
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Exercise 1.2: Least Squares with Feedback

Consider the second-order AR model

yt + ayt�1

= but�1

+ et

where ut is given by feedback as
ut = �Kyt.

Show that given realizations of this signal we cannot estimate a
0

, b
0

separately, but we can estimate
a
0

+ b
0

k. (Book p. 26)
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Exercise 1.3 (3.1): Determine the time constant T from a step response.

A first order system Y (s) = G(s)U(s) with

G(s) =
K

1 + sT
e�s⌧

or in time domain as a di↵erential equation

T
dy(t)

dt
+ y(t) = Ku(t� ⌧)

derive a formula of the step response of an input ut = I(t > 0).

Solution: The system is T dy(t)
dt + y(t) = Ku(t� ⌧). The step response is therefor

y(t) =

(
0 t < ⌧

K (1� exp(�(t� ⌧)/T ))

The tangent at t = ⌧ is given as

y0(t) =
K

T
(t� ⌧)

The tangent reaches the steady state value K at time t = ⌧ + T .

Exercise 1.4 (3.10): Step response as a special case of spectral analysis.

Let (yt)t be the step response of an LTI H(q�1) to an input ut = aI(t � 0). Assume yt = 0 for
t < 0 and yt ⇡ c for t > N . Justify the following rough estimate of H

ĥk =
yk � yk�1

a
, 8k = 0, . . . , N

and show that it is approximatively equal to the estimate provided by the spectral analysis.
Solution:
From

yt =
tX

k=0

hkut�k = a
tX

k=0

hk

and since yt remains constant for values t > N it follows that

ht =
yt � yt�1

a

for t = 0, 1, 2, . . . , n, and since ht ⇡ 0 for large n. Thus the following is a possible estimate of the
transfer function:

Ĥ(ei!) =
nX

k=0

hk exp(�i!k)

=
1

a

nX

k=0

(yk � yk�1

) exp(�i!k)

⇡ 1

a

nX

k=0

yk exp(�i!k)� 1

a

nX

k=0

yk exp(�i!k) exp(�i!) =
1

a
Yn(!)(1� exp(�i!)).
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Now

U(!) =
1X

k=0

uk exp�i!ka
1X

k=0

exp�i!k =
a

1� exp�i!
.
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Exercise 1.5 (4.5): Ill-conditioning of the normal equations in case of a polynomial
trend model.

Given model
yt = a

0

+ a
1

t+ · · ·+ art
r + et

Show that the condition number of the associated matrix �T� is ill-conditioned:

cond(�T�) � O(N2r/(2r + 1))

for large n, and where r > 1 is the polynomial order. Hint. Use the relations for a symmetric
matrix A:

• �
max

(A) � maxi Aii

• �
min

(A)  mini Aii

Solution:
Since for large values of n one has

nX

t=1

tk = O

✓
nk+1

k + 1

◆

for all k = 1, 2, . . . , it follows that

cond(��) =
�
max

(��)

�
min

(��))
� maxi[�T�]ii

mini[�T�]ii
= O

✓
n2r+1

2r + 1

◆
/O(n) = O

✓
n2r

2r + 1

◆
,

which is very large even for moderate values of n and r.

Exercise 1.6

Determine the covariance function for an AR(1) process

yt + ayt�1

= et

where et come from a white noise process with zero mean and unit variance. Determine the
covariance function for an AR(2) process

yt + ayt�1

+ ay(t� 2) = et

Determine the covariance function for an MA(1) process

yt = et + bet�1

Solution:
(a). The stochastic model is

Yt + a
1

Yt�1

+ a
2

Yt�2

= Dt
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Then pre-multiplying both sides with Yt, Yt�1

, . . . , Yt�⌧ gives
8
>>>>>><

>>>>>>:

E[YtYt] + aE[YtYt�1

] = E[YtDt]

E[Yt�1

Yt] + aE[Yt�1

Yt�1

] = E[Yt�1

Dt]

E[Yt�2

Yt] + aE[Yt�2

Yt�1

] = E[Yt�2

Dt]
...

E[Yt�⌧Yt] + aE[Yt�⌧Yt�1

] = E[Yt�⌧Dt],

and working out the expectations gives
8
>>>><

>>>>:

ry(0) + ary(1) = 1

ry(1) + ary(0) = 0
...

ry(⌧) + ary(⌧ � 1) = 0.

Hence we have that ry(⌧) = (�a)⌧ry(0). and that ry(0) + a(�ary(0)) = 1 or ry(0) =
1

1�a2 .
(b). The stochastic model is

Yt + a
1

Yt�1

+ a
2

Yt�2

= Dt

Then pre-multiplying both sides with Yt, Yt�1

, . . . , Yt�⌧ gives
8
>>>>>><

>>>>>>:

E[YtYt] + a
1

E[YtYt�1

] + a
2

E[YtYt�2

] = E[YtDt]

E[Yt�1

Yt] + a
1

E[Yt�1

Yt�1

] + a
2

E[Yt�1

Yt�2

] = E[Yt�1

Dt]

E[Yt�2

Yt] + a
1

E[Yt�2

Yt�1

] + a
2

E[Yt�2

Yt�2

] = E[Yt�2

Dt]
...

E[Yt�⌧Yt] + a
1

E[Yt�⌧Yt�1

] + a
2

E[Yt�⌧Yt�2

] = E[Yt�⌧Dt],

and working out the expectations gives
8
>>>>>><

>>>>>>:

ry(0) + a
1

ry(1) + a
2

ry(2) = 1

ry(1) + a
1

ry(0) + a
2

ry(1) = 0

ry(2) + a
1

ry(1) + a
2

ry(0) = 0
...

ry(⌧) + a
1

ry(⌧ � 1) + a
2

ry(⌧ � 2) = 0.

The expressions of ry(⌧) are then implied by this system, and tend to zero when ⌧ ! 0.
(c). The MA(1) case goes along the same lines. The stochastic model is given as

Yt = Dt + cDt�1

,

then the Yule-walker equations are
8
>>>><

>>>>:

E[YtYt] = E[YtDt] + cE[YtDt�1

] = E[(Dt + cDt�1

)Dt] + cE[(Dt + cDt�1

)Dt�1

]

E[Yt�1

Yt] = E[Yt�1

Dt] + cE[Yt�1

Dt�1

] = E[(Dt�1

+ cDt�2

)Dt] + cE[(Dt�1

+ cDt�2

)Dt�1

]
...

E[Yt�⌧Yt] = E[Yt�⌧Dt] + cE[Yt�⌧Dt�1

].
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and working out the terms gives 8
>>>><

>>>>:

ry(0) = 1 + c2

ry(1) = c
...

ry(⌧) = 0.

which gives a direct formula for the covariances. Note that the covariances equal zero for lags larger
than the MA order.

Exercise 1.7

Given two systems

H
1

(z) =
b

z + a

and

H
2

(z) =
b
0

z + b
1

z2 + a
1

z + a
2

(a) If those systems filters white noise {et} coming from a stochastic process {Dt}t which is zero
mean, and has unit variance. What is the variance of the filtered signal {yt}?

(b) What happens to the output of the second system when you move the poles of H
2

(z) towards
the unit circle?

(c) Where to place the poles to get a ’low-pass’ filter?

(d) Where to put the poles in order to have a resonance top at ! = 1?

(e) How does a resonant system appear on the di↵erent plots?

(f) What happens if H
2

(z) got a zero close to the unit circle?
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Solution:
(a). A solution for computing the variance of the signal Yt = H

1

(z)ut is to construct the Yule-
Walker equations as in the correlation analysis. The model can be expressed in the time domain as
a first order model

Yt+1

+ aYt = bDt.

By multiplication of both sides with Yt and Yt+1

, and taking expectations one gets

(
E[Yt+1

Yt+1

] + aE[Yt+1

Yt] = bE[DtYt+1

]

E[YtYt+1

] + aE[YtYt] = bE[YtDt].

working out the terms gives (
ry(0) + ary(1) = b2

ry(1) = ary(0) = 0.

And this implies that ry(0) = 1.
The same can be worked out for the system H

2

. Let

Yt = H
2

(z)Ut

where �u(!) =
1

2⇡ for any frequency !. Then

�y(!) = H
2

(ei!)H
2

(e�i!)�u(!).

Hence
�y(!) =

(b). The system will display more oscillations (resonances), or equivalently, the sequence of
covariances ry(⌧) will decrease slower to zero when ⌧ increases.

(c). In order to get a low-pass filtering e↵ect, the two (conjugate) poles should be placed close
to the unit circle close to the point where ! = 1 (right end).

(d). In order to make the system to have a resonance top, there should be one dominant
frequency in the system. This frequency is then given as the \ei! ⇡ 57� as ! = 1.

(e). see (b).
(f). The filter becomes high-pass.
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Exercise 1.8

Given an input signal Vt shaped by an ARMA filter,

A(q�1)Xt = C(q�1)Vt,

where A and C are monomials of appropriate order, and where Vt white, zero mean and variance
�2

v . Given noisy observations of this signal, or

Yt = Xt + Et

where Et follows a stochastic process with white, zero mean and variance �2

e and uncorrelated to
Dt. Rewrite this as a ARMA process, what would be the corresponding variance of the ’noise’?
How would the spectrum of Yt look like?

Solution:
Rewrite the system as

Yt = Et +
C(q�1)

A(q�1)
Vt

and hence the spectrum of the output becomes

�y(!) = �e(!) +
C(ei!)

A(ei!)
�v(!)

Let us rewrite this system as an ARMA system based on a possibly di↵erent noise source {Gt}t
with variance �2

g , that is we impose the form

Yt =
D(q�1)

A(q�1)
Gt

with monomial D. Hence �y(!) =
D(ei!)

A(ei!)

�g(!). Then equation both models gives that for any !
one has that

A(ei!)
�2

e

2⇡
+ C(ei!)

�2

e

2⇡
= A(ei!)�y(!) = D(ei!)

�2

g

2⇡

Since A,C,D are monomials (i.e. A(1) = C(1) = D(1) = 1), calculation then gives that �2

g =
�2

e + �2

v .
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