14.1.2 Excercises + solution

Exercise 1.0: Hello world

1. Given a discrete system $G(z)=\frac{K}{\tau-z}$ with $K=1$ and $\tau=2$. Is it BIBO stable? Why/not?
2. Given a system which outputs positive values for any input. Is it LTI? Why/not?
3. Can you solve a least squares estimate for θ for a system satisfying $x_{i} \theta=y_{i}$ for any $\left\{\left(x_{i}, y_{i}\right)\right\}_{i}$? Why/not?
4. Is the median estimate optimal in a least squares sense? Why/not?
5. If we are to model a certain behavior and we know some of the physics behind it - should we go for a black box model? Why/not?
6. If we have a very fast system (time constants smaller than $O\left(10^{-2}\right) s$). Can we get away with slow sampling? Why/not?
7. Does a non-causal model allow an impulse representation? Why/not?
8. Is a sequence of two nontrivial LTIs identifiable from input-output observations? Why/not?
9. Is an ARMAX system linear in the parameters of the polynomials? Why/not?

Exercise 1.1 (6.1): Stability boundary for a second-order system.

Consider the second-order AR model

$$
y_{t}+a_{1} y_{t-1}+a_{2} y_{t-2}=e_{t}
$$

Derive and plot the area in the $\left(a_{1}, a_{2}\right) \in \mathbb{R}^{2}$-plane for which the model is asymptotically stable.
Solution:
The characteristic equation is

$$
z^{2}+a_{1} z+a_{2}=0 .
$$

If z_{1}, z_{2} denotes the roots of this equation, we have that

$$
a_{1}=-\left(z_{1}+z_{2}\right), a_{2}=z_{1} z_{2} .
$$

Consider the limiting case with one or both roots on the unit circle.

- One root in $z=1$, the other one inside the interval $z \in]-1,1[$.

$$
a_{1}=-1-z_{2}, \quad a_{2}=z_{2} \Rightarrow a_{2}=-1-a_{2}
$$

- One root in $z=-1$, the other one inside the interval $z \in]-1,1[$.

$$
a_{1}=-1-z_{2}, a_{2}=-z_{2} \Rightarrow a_{2}=-1+a_{2}
$$

- Two complex conjugate roots $z_{1}, z_{2}=\exp (\pm i \omega)$ with $\omega \in(0, \pi]$

$$
a_{1}=-2 \cos \omega, a_{2}=1 \Rightarrow a_{2} \in[-2,2]
$$

These cases define a closed contour that encloses the stability area as in Figure (14.1.2).

Exercise 1.2: Least Squares with Feedback

Consider the second-order AR model

$$
y_{t}+a y_{t-1}=b u_{t-1}+e_{t}
$$

where u_{t} is given by feedback as

$$
u_{t}=-K y_{t} .
$$

Show that given realizations of this signal we cannot estimate a_{0}, b_{0} separately, but we can estimate $a_{0}+b_{0} k$. (Book p. 26)

Exercise 1.3 (3.1): Determine the time constant T from a step response.
A first order system $Y(s)=G(s) U(s)$ with

$$
G(s)=\frac{K}{1+s T} e^{-s \tau}
$$

or in time domain as a differential equation

$$
T \frac{d y(t)}{d t}+y(t)=K u(t-\tau)
$$

derive a formula of the step response of an input $u_{t}=I(t>0)$.
Solution: The system is $T \frac{d y(t)}{d t}+y(t)=K u(t-\tau)$. The step response is therefor

$$
y(t)= \begin{cases}0 & t<\tau \\ K(1-\exp (-(t-\tau) / T)) & \end{cases}
$$

The tangent at $t=\tau$ is given as

$$
y^{\prime}(t)=\frac{K}{T}(t-\tau)
$$

The tangent reaches the steady state value K at time $t=\tau+T$.
Exercise 1.4 (3.10): Step response as a special case of spectral analysis.
Let $\left(y_{t}\right)_{t}$ be the step response of an LTI $H\left(q^{-1}\right)$ to an input $u_{t}=a I(t \geq 0)$. Assume $y_{t}=0$ for $t<0$ and $y_{t} \approx c$ for $t>N$. Justify the following rough estimate of H

$$
\hat{h}_{k}=\frac{y_{k}-y_{k-1}}{a}, \forall k=0, \ldots, N
$$

and show that it is approximatively equal to the estimate provided by the spectral analysis.
Solution:
From

$$
y_{t}=\sum_{k=0}^{t} h_{k} u_{t-k}=a \sum_{k=0}^{t} h_{k}
$$

and since y_{t} remains constant for values $t>N$ it follows that

$$
h_{t}=\frac{y_{t}-y_{t-1}}{a}
$$

for $t=0,1,2, \ldots, n$, and since $h_{t} \approx 0$ for large n. Thus the following is a possible estimate of the transfer function:

$$
\begin{aligned}
& \hat{H}\left(e^{i \omega}\right)=\sum_{k=0}^{n} h_{k} \exp (-i \omega k) \\
& \quad=\frac{1}{a} \sum_{k=0}^{n}\left(y_{k}-y_{k-1}\right) \exp (-i \omega k) \\
& \quad \approx \frac{1}{a} \sum_{k=0}^{n} y_{k} \exp (-i \omega k)-\frac{1}{a} \sum_{k=0}^{n} y_{k} \exp (-i \omega k) \exp (-i \omega)=\frac{1}{a} Y_{n}(\omega)(1-\exp (-i \omega))
\end{aligned}
$$

14.1. DYNAMIC MODELS

Now

$$
U(\omega)=\sum_{k=0}^{\infty} u_{k} \exp -i \omega k a \sum_{k=0}^{\infty} \exp -i \omega k=\frac{a}{1-\exp -i \omega} .
$$

Exercise 1.5 (4.5): Ill-conditioning of the normal equations in case of a polynomial trend model.

Given model

$$
y_{t}=a_{0}+a_{1} t+\cdots+a_{r} t^{r}+e_{t}
$$

Show that the condition number of the associated matrix $\Phi^{T} \Phi$ is ill-conditioned:

$$
\operatorname{cond}\left(\Phi^{T} \Phi\right) \geq O\left(N^{2 r} /(2 r+1)\right)
$$

for large n, and where $r>1$ is the polynomial order. Hint. Use the relations for a symmetric matrix A :

- $\lambda_{\max }(A) \geq \max _{i} A_{i i}$
- $\lambda_{\text {min }}(A) \leq \min _{i} A_{i i}$

Solution:
Since for large values of n one has

$$
\sum_{t=1}^{n} t^{k}=O\left(\frac{n^{k+1}}{k+1}\right)
$$

for all $k=1,2, \ldots$, it follows that

$$
\operatorname{cond}\left(\phi^{\phi}\right)=\frac{\lambda_{\max }\left(\phi^{\phi}\right)}{\left.\lambda_{\min }\left(\phi^{\phi}\right)\right)} \geq \frac{\max _{i}\left[\phi^{T} \phi\right]_{i i}}{\min _{i}\left[\phi^{T} \phi\right]_{i i}}=O\left(\frac{n^{2 r+1}}{2 r+1}\right) / O(n)=O\left(\frac{n^{2 r}}{2 r+1}\right),
$$

which is very large even for moderate values of n and r.

Exercise 1.6

Determine the covariance function for an $\mathrm{AR}(1)$ process

$$
y_{t}+a y_{t-1}=e_{t}
$$

where e_{t} come from a white noise process with zero mean and unit variance. Determine the covariance function for an $\operatorname{AR}(2)$ process

$$
y_{t}+a y_{t-1}+a y(t-2)=e_{t}
$$

Determine the covariance function for an MA(1) process

$$
y_{t}=e_{t}+b e_{t-1}
$$

Solution:
(a). The stochastic model is

$$
Y_{t}+a_{1} Y_{t-1}+a_{2} Y_{t-2}=D_{t}
$$

Then pre-multiplying both sides with $Y_{t}, Y_{t-1}, \ldots, Y_{t-\tau}$ gives

$$
\left\{\begin{array}{l}
\mathbb{E}\left[Y_{t} Y_{t}\right]+a \mathbb{E}\left[Y_{t} Y_{t-1}\right]=\mathbb{E}\left[Y_{t} D_{t}\right] \\
\mathbb{E}\left[Y_{t-1} Y_{t}\right]+a \mathbb{E}\left[Y_{t-1} Y_{t-1}\right]=\mathbb{E}\left[Y_{t-1} D_{t}\right] \\
\mathbb{E}\left[Y_{t-2} Y_{t}\right]+a \mathbb{E}\left[Y_{t-2} Y_{t-1}\right]=\mathbb{E}\left[Y_{t-2} D_{t}\right] \\
\vdots \\
\mathbb{E}\left[Y_{t-\tau} Y_{t}\right]+a \mathbb{E}\left[Y_{t-\tau} Y_{t-1}\right]=\mathbb{E}\left[Y_{t-\tau} D_{t}\right],
\end{array}\right.
$$

and working out the expectations gives

$$
\left\{\begin{array}{l}
r_{y}(0)+a r_{y}(1)=1 \\
r_{y}(1)+a r_{y}(0)=0 \\
\vdots \\
r_{y}(\tau)+a r_{y}(\tau-1)=0
\end{array}\right.
$$

Hence we have that $r_{y}(\tau)=(-a)^{\tau} r_{y}(0)$. and that $r_{y}(0)+a\left(-a r_{y}(0)\right)=1$ or $r_{y}(0)=\frac{1}{1-a^{2}}$.
(b). The stochastic model is

$$
Y_{t}+a_{1} Y_{t-1}+a_{2} Y_{t-2}=D_{t}
$$

Then pre-multiplying both sides with $Y_{t}, Y_{t-1}, \ldots, Y_{t-\tau}$ gives

$$
\left\{\begin{array}{l}
\mathbb{E}\left[Y_{t} Y_{t}\right]+a_{1} \mathbb{E}\left[Y_{t} Y_{t-1}\right]+a_{2} \mathbb{E}\left[Y_{t} Y_{t-2}\right]=\mathbb{E}\left[Y_{t} D_{t}\right] \\
\mathbb{E}\left[Y_{t-1} Y_{t}\right]+a_{1} \mathbb{E}\left[Y_{t-1} Y_{t-1}\right]+a_{2} \mathbb{E}\left[Y_{t-1} Y_{t-2}\right]=\mathbb{E}\left[Y_{t-1} D_{t}\right] \\
\mathbb{E}\left[Y_{t-2} Y_{t}\right]+a_{1} \mathbb{E}\left[Y_{t-2} Y_{t-1}\right]+a_{2} \mathbb{E}\left[Y_{t-2} Y_{t-2}\right]=\mathbb{E}\left[Y_{t-2} D_{t}\right] \\
\vdots \\
\mathbb{E}\left[Y_{t-\tau} Y_{t}\right]+a_{1} \mathbb{E}\left[Y_{t-\tau} Y_{t-1}\right]+a_{2} \mathbb{E}\left[Y_{t-\tau} Y_{t-2}\right]=\mathbb{E}\left[Y_{t-\tau} D_{t}\right],
\end{array}\right.
$$

and working out the expectations gives

$$
\left\{\begin{array}{l}
r_{y}(0)+a_{1} r_{y}(1)+a_{2} r_{y}(2)=1 \\
r_{y}(1)+a_{1} r_{y}(0)+a_{2} r_{y}(1)=0 \\
r_{y}(2)+a_{1} r_{y}(1)+a_{2} r_{y}(0)=0 \\
\vdots \\
r_{y}(\tau)+a_{1} r_{y}(\tau-1)+a_{2} r_{y}(\tau-2)=0
\end{array}\right.
$$

The expressions of $r_{y}(\tau)$ are then implied by this system, and tend to zero when $\tau \rightarrow 0$.
(c). The MA(1) case goes along the same lines. The stochastic model is given as

$$
Y_{t}=D_{t}+c D_{t-1}
$$

then the Yule-walker equations are

$$
\left\{\begin{array}{l}
\mathbb{E}\left[Y_{t} Y_{t}\right]=\mathbb{E}\left[Y_{t} D_{t}\right]+c \mathbb{E}\left[Y_{t} D_{t-1}\right]=\mathbb{E}\left[\left(D_{t}+c D_{t-1}\right) D_{t}\right]+c \mathbb{E}\left[\left(D_{t}+c D_{t-1}\right) D_{t-1}\right] \\
\mathbb{E}\left[Y_{t-1} Y_{t}\right]=\mathbb{E}\left[Y_{t-1} D_{t}\right]+c \mathbb{E}\left[Y_{t-1} D_{t-1}\right]=\mathbb{E}\left[\left(D_{t-1}+c D_{t-2}\right) D_{t}\right]+c \mathbb{E}\left[\left(D_{t-1}+c D_{t-2}\right) D_{t-1}\right] \\
\vdots \\
\mathbb{E}\left[Y_{t-\tau} Y_{t}\right]=\mathbb{E}\left[Y_{t-\tau} D_{t}\right]+c \mathbb{E}\left[Y_{t-\tau} D_{t-1}\right] .
\end{array}\right.
$$

and working out the terms gives

$$
\left\{\begin{array}{l}
r_{y}(0)=1+c^{2} \\
r_{y}(1)=c \\
\vdots \\
r_{y}(\tau)=0 .
\end{array}\right.
$$

which gives a direct formula for the covariances. Note that the covariances equal zero for lags larger than the MA order.

Exercise 1.7

Given two systems

$$
H_{1}(z)=\frac{b}{z+a}
$$

and

$$
H_{2}(z)=\frac{b_{0} z+b_{1}}{z^{2}+a_{1} z+a_{2}}
$$

(a) If those systems filters white noise $\left\{e_{t}\right\}$ coming from a stochastic process $\left\{D_{t}\right\}_{t}$ which is zero mean, and has unit variance. What is the variance of the filtered signal $\left\{y_{t}\right\}$?
(b) What happens to the output of the second system when you move the poles of $H_{2}(z)$ towards the unit circle?
(c) Where to place the poles to get a 'low-pass' filter?
(d) Where to put the poles in order to have a resonance top at $\omega=1$?
(e) How does a resonant system appear on the different plots?
(f) What happens if $H_{2}(z)$ got a zero close to the unit circle?

Solution:

(a). A solution for computing the variance of the signal $Y_{t}=H_{1}(z) u_{t}$ is to construct the YuleWalker equations as in the correlation analysis. The model can be expressed in the time domain as a first order model

$$
Y_{t+1}+a Y_{t}=b D_{t}
$$

By multiplication of both sides with Y_{t} and Y_{t+1}, and taking expectations one gets

$$
\left\{\begin{array}{l}
\mathbb{E}\left[Y_{t+1} Y_{t+1}\right]+a \mathbb{E}\left[Y_{t+1} Y_{t}\right]=b \mathbb{E}\left[D_{t} Y_{t+1}\right] \\
\mathbb{E}\left[Y_{t} Y_{t+1}\right]+a \mathbb{E}\left[Y_{t} Y_{t}\right]=b \mathbb{E}\left[Y_{t} D_{t}\right]
\end{array}\right.
$$

working out the terms gives

$$
\left\{\begin{array}{l}
r_{y}(0)+a r_{y}(1)=b^{2} \\
r_{y}(1)=a r_{y}(0)=0
\end{array}\right.
$$

And this implies that $r_{y}(0)=1$.
The same can be worked out for the system H_{2}. Let

$$
Y_{t}=H_{2}(z) U_{t}
$$

where $\phi_{u}(\omega)=\frac{1}{2 \pi}$ for any frequency ω. Then

$$
\phi_{y}(\omega)=H_{2}\left(e^{i \omega}\right) H_{2}\left(e^{-i \omega}\right) \phi_{u}(\omega) .
$$

Hence

$$
\phi_{y}(\omega)=
$$

(b). The system will display more oscillations (resonances), or equivalently, the sequence of covariances $r_{y}(\tau)$ will decrease slower to zero when τ increases.
(c). In order to get a low-pass filtering effect, the two (conjugate) poles should be placed close to the unit circle close to the point where $\omega=1$ (right end).
(d). In order to make the system to have a resonance top, there should be one dominant frequency in the system. This frequency is then given as the $\angle e^{i \omega} \approx 57^{\circ}$ as $\omega=1$.
(e). see (b).
(f). The filter becomes high-pass.

Exercise 1.8

Given an input signal V_{t} shaped by an ARMA filter,

$$
A\left(q^{-1}\right) X_{t}=C\left(q^{-1}\right) V_{t}
$$

where A and C are monomials of appropriate order, and where V_{t} white, zero mean and variance σ_{v}^{2}. Given noisy observations of this signal, or

$$
Y_{t}=X_{t}+E_{t}
$$

where E_{t} follows a stochastic process with white, zero mean and variance σ_{e}^{2} and uncorrelated to D_{t}. Rewrite this as a ARMA process, what would be the corresponding variance of the 'noise'? How would the spectrum of Y_{t} look like?

Solution:
Rewrite the system as

$$
Y_{t}=E_{t}+\frac{C\left(q^{-1}\right)}{A\left(q^{-1}\right)} V_{t}
$$

and hence the spectrum of the output becomes

$$
\phi_{y}(\omega)=\phi_{e}(\omega)+\frac{C\left(e^{i \omega}\right)}{A\left(e^{i \omega}\right)} \phi_{v}(\omega)
$$

Let us rewrite this system as an ARMA system based on a possibly different noise source $\left\{G_{t}\right\}_{t}$ with variance σ_{g}^{2}, that is we impose the form

$$
Y_{t}=\frac{D\left(q^{-1}\right)}{A\left(q^{-1}\right)} G_{t}
$$

with monomial D. Hence $\phi_{y}(\omega)=\frac{D\left(e^{i \omega}\right)}{A\left(e^{i \omega}\right)} \phi_{g}(\omega)$. Then equation both models gives that for any ω one has that

$$
A\left(e^{i \omega}\right) \frac{\sigma_{e}^{2}}{2 \pi}+C\left(e^{i \omega}\right) \frac{\sigma_{e}^{2}}{2 \pi}=A\left(e^{i \omega}\right) \phi_{y}(\omega)=D\left(e^{i \omega}\right) \frac{\sigma_{g}^{2}}{2 \pi}
$$

Since A, C, D are monomials (i.e. $A(1)=C(1)=D(1)=1$), calculation then gives that $\sigma_{g}^{2}=$ $\sigma_{e}^{2}+\sigma_{v}^{2}$.

