14.3 Prediction Error Methods

14.3.1 Exercises

Exercise 3.1: On the use of cross-correlation test for the LS model.

Consider an ARX model

$$
A\left(q^{-1}\right) y_{t}=B\left(q^{-1}\right) u_{t}+e_{t}
$$

with parameters $\theta=\left(a_{1}, \ldots, a_{n_{a}}, b_{1}, \ldots b_{n_{b}}\right)^{T}$. Assume that the estimate $\hat{\theta}$ is found by LS, show that $\hat{r}_{e u}(\tau)=\frac{1}{n} \sum_{t=1}^{n} u_{t} e_{t}=0$ for all $\tau=1, \ldots, n_{b}$.

Exercise 3.2: Identifiability results for ARX models.

Consider the system (with A_{0}, B_{0} coprime, and degrees $n_{a_{0}}, n_{b_{0}}$)

$$
A_{0}\left(q^{-1}\right) Y_{t}=B_{0}\left(q^{-1}\right) u_{t}+D_{t}
$$

where D_{t} is zero mean, white noise. Let $\left\{y_{t}\right\}_{t}$ be realizations of the stochastic process $\left\{Y_{t}\right\}$. Use the LS in the model structure

$$
A\left(q^{-1}\right) y_{t}=B\left(q^{-1}\right) u_{t}+\epsilon_{t}
$$

with degrees $n_{a} \geq n_{a_{0}}$ and $n_{b} \geq n_{b_{0}}$. Assume the system operates in open-loop and the input u_{t} is PE of order n_{b}. Let $\epsilon_{t}(\theta)$ denote the random variables modeling the residuals ϵ_{t} for given parameters $\theta=(A, B)$. Prove the following results:
(a) The asymptotic cost function $\mathbb{E}\left[\epsilon_{t}^{2}(\theta)\right]$ has a unique minimum.
(b) The estimated polynomials are coprime.

Exercise 3.3

Given the predictor

$$
\hat{y}(t+1 \mid t)=\frac{1-\alpha}{1-\alpha q^{-1}} y_{t}
$$

where $|\alpha|<1$ is a constant.

1. For which ARMA-model is this the optimal predictor, and what assumptions do we make on the noise process so that this is L_{2} optimal?
2. What is the optimal two-step ahead predictor $\hat{y}(t \mid t-2)$?
3. If using a numerical optimization procedure for implementing PEM, one wants to use the gradient of $\epsilon(t+1 \mid t)=y_{t}-\hat{y}(t \mid t-1)$ with respect to α. Give a closed form expression of this gradient.

Exercise 3.4: An illustration of the Parsimony Principle.

Consider the following $\operatorname{AR}(1)$ process:

$$
Y_{t}+a_{0} Y_{t-1}=D_{t}
$$

with $\left|a_{0}\right|<1$ unknown, and where $\left\{D_{t}\right\}_{t}$ is a white noise stochastic process with zero mean and variance λ^{2}. Let us have a realization $\left\{y_{t}\right\}_{t=1}^{n}$ of length n of this process. Then assume we fit this system with the following two candidate models:

$$
\mathcal{M}_{1}: y_{t}+a y_{t-1}=\epsilon_{t}
$$

and

$$
\mathcal{M}_{2}: y_{t}+a_{1} y_{t-1}+a_{2} y_{t-2}=\epsilon_{t}^{\prime}
$$

Let \hat{a} denote the LS estimate of a in \mathcal{M}_{1}, and let \hat{a}_{1}, \hat{a}_{2} be the LS estimate in \mathcal{M}_{2}. What are the asymptotic variances $\sqrt{n}\left(\hat{a}-a_{0}\right)$ and $\sqrt{n}\left(\hat{a}_{1}-a_{0}\right)$?

