14.4 Recursive Identification

14.4.1 Exercises

Exercise 4.1: Derivation of the real-time RLS algorithm.
Show that the weighted RLS algorithm

$$
\left\{\begin{array}{l}
\hat{\theta}_{t}=\hat{\theta}_{t-1}+K_{t} \epsilon_{t} \\
\epsilon_{t}=y_{t}-\varphi_{t}^{T} \hat{\theta}_{t-1} \\
K_{t}=\mathbf{P}_{t} \varphi_{t} \\
\mathbf{P}_{t}=\frac{1}{\lambda_{t}}\left[\mathbf{P}_{t-1}-\frac{\mathbf{P}_{t-1} \varphi_{t} \varphi_{t}^{T} \mathbf{P}_{t-1}}{\lambda_{t}+\varphi_{t}^{T} \mathbf{P}_{t-1} \varphi_{t}}\right]
\end{array}\right.
$$

solves in each step the problem

$$
\theta_{t}=\underset{\theta}{\operatorname{argmin}} \sum_{s=1}^{t} \lambda^{t-s} \epsilon_{s}^{2}(\theta)
$$

where $\epsilon_{s}^{2}(\theta)=y_{s}-\varphi_{s}^{T} \hat{\theta}$ for all $s=1, \ldots, t$.
Exercise 4.2: Influence of forgetting factor on consistency properties of parameter estimates.

Consider the static-gain system

$$
y_{t}=b u_{t}+D_{t}, \quad \forall t=1,2, \ldots
$$

where

$$
\mathbb{E}\left[D_{t}\right]=0, \mathbb{E}\left[D_{s} D_{t}\right]=\delta_{t, s}
$$

and u_{t} is a persistently exciting nonrandom signal. The unknown parameter b is estimated as

$$
\hat{b}=\underset{b}{\operatorname{argmin}} \sum_{t=1}^{n} \lambda^{n-t}\left(y_{t}-b u_{t}\right)^{2}
$$

where n denotes the number of datapoints, and the forgetting factor λ satisfies $0<\lambda \leq 1$. Determine $\operatorname{var}(\hat{b})$. Show that for $n \rightarrow \infty$ one has $\operatorname{var}(\hat{b})=0$. Also, show that for $\lambda<1$ there are signals u_{t} for which consistence is not obtained.

Hint. Consider the signal where u_{t} is constant.
Exercise 4.3: Convergence properties and dependence on initial conditions of the RLS estimate.

Consider the model

$$
y_{t}=\varphi_{t}^{T} \theta_{0}+\epsilon_{t}
$$

Let the offline weighted LS estimate of θ_{0} up to instant t be

$$
\hat{\theta}_{t}=\left(\sum_{s=1}^{t} \lambda^{t-s} \varphi_{s} \varphi_{s}^{T}\right)^{-1}\left(\sum_{s=1}^{t} \lambda^{t-s} \varphi_{s} y_{s}\right)
$$

Consider also the online weighted RLS estimates $\left\{\bar{\theta}_{s}\right\}_{s}$
(i) Derive the difference equations for \mathbf{P}_{t}^{-1} and $\mathbf{P}_{t}^{-1} \hat{\theta}_{t}$. Solve this equations to find how $\hat{\theta}_{t}$ depends on the initial values $\hat{\theta}_{0}$ and \mathbf{P}_{0} and on the forgetting factor λ.
(ii) Let $\mathbf{P}_{0}=\rho I_{n}$, then prove that for every t where $\bar{\theta}_{t}$ exists

$$
\lim _{\rho \rightarrow \infty} \hat{\theta}_{t}=\bar{\theta}_{t}
$$

(iii) Suppose that $\bar{\theta}_{t}$ is bounded, and suppose that $\lambda^{t} \mathbf{P}_{t} \rightarrow 0$ as $t \rightarrow \infty$. Prove that

$$
\lim _{t \rightarrow \infty}\left(\hat{\theta}_{t}-\bar{\theta}_{t}\right)=0
$$

Exercise 4.4: An RLS algorithm with a sliding window.

Consider the parameter estimate

$$
\hat{\theta}_{t}=\underset{\theta}{\operatorname{argmin}} \sum_{s=t-m+1}^{t} \epsilon_{s}^{2}(\theta)
$$

where $\epsilon_{s}(\theta)=y_{s}-\varphi_{s}^{T} \theta$. The number m is the size of the sliding window. Show that such $\hat{\theta}_{t}$ can be computed recursively as

$$
\left\{\begin{array}{l}
\hat{\theta}_{t}=\hat{\theta}_{t-1}+\mathbf{K}_{1} \epsilon\left(t, \hat{\theta}_{t-1}\right)-\mathbf{K}_{2} \epsilon\left(t-m, \hat{\theta}_{t-1}\right) \\
\mathbf{K}_{1}=\mathbf{P}_{t-1} \varphi_{t}\left(I+\left[\begin{array}{c}
\varphi_{t}^{T} \\
-\varphi_{t-m}^{T}
\end{array}\right] \mathbf{P}_{t-1}\left[\begin{array}{ll}
\varphi_{t} & \varphi_{t-m}
\end{array}\right]\right)^{-1} \\
\mathbf{K}_{2}=\mathbf{P}_{t-1} \varphi_{t-m}\left(I+\left[\begin{array}{c}
\varphi_{t}^{T} \\
-\varphi_{t-m}^{T}
\end{array}\right] \mathbf{P}_{t-1}\left[\begin{array}{ll}
\varphi_{t} & \varphi_{t-m}
\end{array}\right]\right)^{-1} \\
\mathbf{P}_{t}=\mathbf{P}_{t-1}-\left[\begin{array}{ll}
\mathbf{K}_{1} & \mathbf{K}_{2}
\end{array}\right]\left[\begin{array}{c}
\varphi_{t}^{T} \\
-\varphi_{t-m}^{T}
\end{array}\right] \mathbf{P}_{t-1}
\end{array}\right.
$$

